VŠB - Technical University of Ostrava Faculty of Mining and Geology

MATHEMATICS I

Jarmila Doležalová

Ostrava 2005

VŠB -TECHNICAL UNIVERSITY OF OSTRAVA

Department of Mathematics and Descriptive Geometry

MATHEMATICS I

Jarmila Doležalová

Authors are responsible for their written language.

© Jarmila Doležalová, 2005
ISBN 80-248-0796-3

1. LINEAR ALGEBRA

1.1. Matrices

1.1.1. Definitions

$\boldsymbol{m} \boldsymbol{x} \boldsymbol{n}$ matrix with \boldsymbol{m} rows and \boldsymbol{n} columns is called an array of $\boldsymbol{m} . \boldsymbol{n}$ real numbers

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(a_{i j}\right)
$$

The entry $a_{i j}$ denotes the element in the ith row and \boldsymbol{j} th column.

- If $\boldsymbol{m}=\boldsymbol{n}$ then the array is square, and \mathbf{A} is then called square matrix of order \boldsymbol{n}.
- In a square matrix of order n, the diagonal containing elements $a_{11}, a_{22}, \cdots, a_{n n}$ is called principal or leading diagonal.
- Diagonal matrix D is a square matrix that has its only non-zero elements along the leading diagonal.

$$
\mathbf{D}=\left(\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & & \ldots & a_{n n}
\end{array}\right)
$$

$$
\mathbf{E}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & & \ldots & 1
\end{array}\right)
$$

- A very important special case of diagonal matrix is the unit matrix or identity matrix \mathbf{E}, for which $a_{11}=a_{22}=\ldots=a_{n n}=1$.
- The zero or null matrix is the matrix with every element zero.
- The transposed matrix \mathbf{A}^{T} of matrix \mathbf{A} is just the matrix with rows and columns interchanged.

$$
\mathbf{A}^{\mathrm{T}}=\left(\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
\vdots & \vdots & \ldots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right)
$$

- If the matrix has one row or one column
$\underline{\mathrm{u}}=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ or $\underline{\mathrm{v}}=\left(\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right)=\left(v_{1}, v_{2}, \cdots, v_{n}\right)^{T}$
then it is called a row vector or a column vector.

1.1.2. Basic Properties of Matrices

Equality A = B
Two matrices \mathbf{A} and \mathbf{B} are said to be equal if and only if all their corresponding elements are the same ($a_{i j}=b_{i j}$ for $\forall i, j$) and they are of the same order $m \times n$.

Addition C = A + B

We can only add a $m \times n$ matrix to another $m \times n$ matrix, and an element of the sum is the sum of the corresponding elements.
$\mathbf{C}=\left(c_{i j}\right)=\left(a_{i j}+b_{i j}\right)$ for $\forall i, j$.

Multiplication by a scalar k

The matrix $\mathbf{k A}$ has elements $\mathrm{ka}_{\mathrm{ij}}$, i.e., we just multiply each element by the scalar k .

$$
\mathbf{D}=\mathbf{k} \mathbf{A}=\left(d_{i j}\right)=\left(k a_{i j}\right) \text { for } \forall i, j .
$$

Matrix multiplication

If \mathbf{A} is $m \times p$ matrix with elements a_{ij} and \mathbf{B} a $p \times n$ matrix with elements b_{ij} then we define the product $\mathbf{C}=\mathbf{A} . \mathbf{B}$ as the $m x n$ matrix with elements
$\mathbf{C}=\left(c_{i j}\right)=\left(a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i p} b_{p j}\right)=\sum_{k=1}^{p} a_{i k} b_{k j}$, for $\mathrm{i}=1,2, \cdots, m$ and $\mathrm{j}=1,2, \cdots, n$.
The i th row of \mathbf{A} is multiplied term by term with the j th column of \mathbf{B} to form the $i j t h$ component of \mathbf{C}. In order for multiplication to be possible, A must have p columns and \mathbf{B} must have p rows otherwise their product A.B is not defined.
Matrix multiplication is not commutative in general: $\mathbf{A} . \mathbf{B} \neq$ B.A.

Properties of the transpose:

From the definition, the transpose of matrix is such that
$(\mathbf{A}+\mathbf{B})^{\mathrm{T}}=\mathbf{A}^{\mathrm{T}}+\mathbf{B}^{\mathrm{T}}$,
$(\mathbf{A} . \mathbf{B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}, \quad\left(\mathbf{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathbf{A}$.

Example 1.1.1: Given the matrices $\mathbf{A}=\left(\begin{array}{rrr}2 & 3 & 4 \\ -1 & 2 & 0\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rrr}1 & 0 & -3 \\ 2 & -1 & 1\end{array}\right)$.
Find the matrices $\mathbf{A}+\mathbf{B}, \mathbf{A}-\mathbf{B}, \mathbf{B}-\mathbf{A}, \mathbf{3 A}, \mathbf{4 B}, \mathbf{3 A}+\mathbf{4 B}, \mathbf{A}^{\mathrm{T}}+\mathbf{B}^{\mathrm{T}}$.
Solution:

$$
\mathbf{A}+\mathbf{B}=\left(\begin{array}{lll}
3 & 3 & 1 \\
1 & 1 & 1
\end{array}\right), \quad \mathbf{A}-\mathbf{B}=\left(\begin{array}{rrr}
1 & 3 & 7 \\
-3 & 3 & -1
\end{array}\right), \quad \mathbf{B}-\mathbf{A}=\left(\begin{array}{rrr}
-1 & -3 & -7 \\
3 & -3 & 1
\end{array}\right),
$$

$$
\begin{aligned}
& \mathbf{3} \mathbf{A}=\left(\begin{array}{rrr}
6 & 9 & 12 \\
-3 & 6 & 0
\end{array}\right), \quad \mathbf{4} \mathbf{B}=\left(\begin{array}{rrr}
4 & 0 & -12 \\
8 & -4 & 4
\end{array}\right), \quad \mathbf{3 A}+\mathbf{4 B}=\left(\begin{array}{rrr}
10 & 9 & 0 \\
5 & 2 & 4
\end{array}\right), \\
& \mathbf{A}^{\mathrm{T}}=\left(\begin{array}{rr}
2 & -1 \\
3 & 2 \\
4 & 0
\end{array}\right), \quad \mathbf{B}^{\mathrm{T}}=\left(\begin{array}{rr}
1 & 2 \\
0 & -1 \\
-3 & 1
\end{array}\right), \mathbf{A}^{\mathrm{T}}+\mathbf{B}^{\mathrm{T}}=\left(\begin{array}{ll}
3 & 1 \\
3 & 1 \\
1 & 1
\end{array}\right) .
\end{aligned}
$$

Example1.1.2: Given the matrices

$$
\mathbf{C}=\left(\begin{array}{lll}
3 & 3 & 1 \\
1 & 1 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{D}=\left(\begin{array}{ll}
2 & 3 \\
1 & 0 \\
2 & 0
\end{array}\right)
$$

Find the matrices $\mathbf{K}=\mathbf{C} . \mathbf{D}$ and $\mathbf{M}=\mathbf{D} . \mathbf{C}$.

Solution: $\quad \mathbf{K}=\mathbf{C} . \mathbf{D}=\left(\begin{array}{cc}11 & 9 \\ 5 & 3\end{array}\right), \quad \mathbf{M}=\mathbf{D} . \mathbf{C}=\left(\begin{array}{lll}9 & 9 & 5 \\ 3 & 3 & 1 \\ 6 & 6 & 2\end{array}\right)$,

$$
\begin{array}{lll}
k_{11}=3.2+3.1+1.2=11, & m_{11}=2.3+3.1=9, & m_{12}=2.3+3.1=9, \\
k_{12}=3.3+3.0+1.0=9, & m_{13}=2.1+3.1=5, & m_{21}=1.3+0.1=3, \\
k_{21}=1.2+1.1+1.2=5, & m_{22}=1.3+0.1=3, & m_{23}=1.1+0.1=1, \\
k_{22}=1.3+1.0+1.0=3 . & m_{31}=2.3+0.1=6, & m_{32}=2.3+0.1=6, \\
& m_{33}=2.1+0.1=2 . &
\end{array}
$$

C.D $=$ D.C.

1.2. Determinants

1.2.1. Definition and Basic Properties

The determinant of order $\boldsymbol{n}>1$ a square matrix
$\mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ldots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right)$
is defined as a number det $\mathbf{A}=a_{11} D_{11}-a_{12} D_{12}+\ldots+(-1)^{1+n} a_{1 n} D_{1 n}=$
$=a_{11} \cdot\left|\begin{array}{ccc}a_{22} & \cdots & a_{2 n} \\ \vdots & \cdots & \vdots \\ a_{n 2} & \cdots & a_{n n}\end{array}\right|-a_{12} \cdot\left|\begin{array}{cccc}a_{21} & a_{23} & \cdots & a_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n 1} & a_{n 3} & \cdots & a_{n n}\end{array}\right|+\ldots+(-1)^{1+n} a_{1 n} \cdot\left|\begin{array}{ccc}a_{21} & \cdots & a_{2, n-1} \\ \vdots & \cdots & \vdots \\ a_{n 1} & \cdots & a_{n, n-1}\end{array}\right|$.
We write det $\mathbf{A}=A=\left|\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ldots & \vdots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right|$
The commonly useful properties are as follows:

- Thus two rows (or columns) are the same, the determinant is zero.
- We multiply a determinant by a number c if we multiply by this number c all the elements of a row or of a column.
- Interchanging two rows (or columns) changes the sign of the determinant.
- The addition rule:

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|+\left|\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|=\left|\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

Similarly for the columns.

- Adding multiples of rows (or columns):

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|+c\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|=\left|\begin{array}{cccc}
a_{11}+c a_{21} & a_{12}+c a_{22} & \ldots & a_{1 n}+c a_{2 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

1.2.2. Evaluation of Determinants

For $n=1$, is $\operatorname{det} \mathbf{A}=a_{11}$, for $n=2$, is det $\mathbf{A}=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}$.

Example 1.2.1: Evaluate the determinant $\quad \operatorname{det} \mathbf{B}=\left|\begin{array}{ll}1 & 3 \\ 4 & 5\end{array}\right|$.
Solution: $\quad \operatorname{det} \mathbf{B}=1.5-3.4=5-12=-7$
Sarrus's rule for a determinant of the third order:
$\operatorname{det} \mathbf{A}=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=a_{11} \cdot\left|\begin{array}{ll}\mathrm{a}_{22} & \mathrm{a}_{23} \\ \mathrm{a}_{32} & \mathrm{a}_{33}\end{array}\right|-a_{12} \cdot\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13} \cdot\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|=$
$=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{31} a_{22} a_{13}-a_{32} a_{23} a_{11}-a_{33} a_{21} a_{12}$.
Example 1.2.2: Evaluate the determinant $\operatorname{det} \mathbf{C}=\left|\begin{array}{rrr}6 & 1 & 2 \\ 0 & 3 & -1 \\ 4 & 2 & 1\end{array}\right|$.
Solution: $\operatorname{det} \mathbf{C}=6.3 .1+0.2 \cdot 2+4.1 .(-1)-[2.3 .4+(-1) \cdot 2.6+1.1 .0]=$ $=18+0-4-(24-12+0)=14-12=2$

In general for the determinant of order $n>1$
the Laplace's expansion according to the ith row holds:
$\operatorname{det} \mathbf{A}=\sum_{j=1}^{n}(-1)^{i+j} a_{i j} A_{i j}=(-1)^{i+1} a_{i 1} A_{i 1}+(-1)^{i+2} a_{i 2} A_{i 2}+\ldots+(-1)^{i+n} a_{i n} A_{i n}$,
or the Laplace's expansion according to the \boldsymbol{j} th column holds:
$\operatorname{det} \mathbf{A}=\sum_{i=1}^{n}(-1)^{i+j} a_{i j} A_{i j}=(-1)^{1+j} a_{1 j} A_{1 j}+(-1)^{2+j} a_{2 j} A_{2 j}+\ldots+(-1)^{n+j} a_{n j} A_{n j}$.
Note that

- $(-1)^{i+j}$ is called a sign of element $a_{i j}$,
- determinant $\mathrm{A}_{i j}$ originating from det \mathbf{A} omitting the i th row and j th column, is called minor of order $\boldsymbol{n} \mathbf{- 1}$ of det \mathbf{A} belonging to the element $a_{i j}$,
- cofactor $A_{i j}^{*}$ of the element $\mathbf{a}_{\mathbf{i j}}$ is defined as the minor A_{ij} multiplied by the appropriate $\operatorname{sign}(-1)^{i+j}: A_{i j}^{*}=(-1)^{i+j} A_{i j}$.

Example 1.2.3: Evaluate the determinant det $\mathbf{D}=\left|\begin{array}{rrrr}2 & 0 & 4 & 2 \\ 3 & -2 & 3 & 1 \\ 0 & 4 & 5 & -1 \\ -1 & 2 & 1 & 3\end{array}\right|$
Solution: The second column contains only even numbers therefore we can put it in form of product 2*det D_{a}.
We do the Laplace's expansion according to the second column in the second step.

$$
\begin{aligned}
\operatorname{det} \mathbf{D} & =2 \cdot\left|\begin{array}{rrrr}
2 & 0 & 4 & 2 \\
3 & -1 & 3 & 1 \\
0 & 2 & 5 & -1 \\
-1 & 1 & 1 & 3
\end{array}\right|=2 \cdot\left|\begin{array}{rrrr}
2 & 0 & 4 & 2 \\
3 & -1 & 3 & 1 \\
6 & 0 & 11 & 1 \\
2 & 0 & 4 & 4
\end{array}\right|=2(-1)(-1)^{2+2}\left|\begin{array}{rrr}
2 & 4 & 2 \\
6 & 11 & 1 \\
2 & 4 & 4
\end{array}\right|=\text { (Sarrus's rule) }= \\
& =-2[88+48+8-(44+8+96)]=8 \text { (Sarrus's rule) }
\end{aligned}
$$

or Laplace's expansion according to the third row:

$$
\operatorname{det} \mathbf{D}=-2\left|\begin{array}{rrr}
2 & 4 & 2 \\
6 & 11 & 1 \\
2 & 4 & 4
\end{array}\right|=-2\left|\begin{array}{rrr}
2 & 4 & 2 \\
6 & 11 & 1 \\
0 & 0 & 2
\end{array}\right|=-2 \cdot 2 \cdot(-1)^{3+3}\left|\begin{array}{rr}
2 & 4 \\
6 & 11
\end{array}\right|=8 \text {. }
$$

1.2.3. Matrix Inversion

The determinant of order k formed by the elements in the intersections of arbitrary k rows and k columns of matrix $\mathbf{A}=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{\mathrm{m} 1} & a_{\mathrm{m} 2} & \cdots & a_{\mathrm{mn}}\end{array}\right)$
is called a minor of order \boldsymbol{k} of the matrix $\mathbf{A}(1 \leq k \leq \min (m, n))$.
A matrix \mathbf{A} is of rank \mathbf{h} if and only if there exists a minor of A of order \mathbf{h} different from zero, any minor of A of order higher than \mathbf{h} being equal to zero.
The square matrix \mathbf{A} is called

- regular, if det $\mathbf{A} \neq \mathbf{0}$,
- singular, if det $\mathbf{A}=\mathbf{0}$.

The inverse of the square matrix \mathbf{A} of order n is a square matrix $\mathbf{A}^{\mathbf{- 1}}$ of order n such that

$$
\text { A. } A^{-1}=A^{-1} \cdot A=E,
$$

where \mathbf{E} is unit matrix.
The inverse matrix $\mathbf{A}^{\mathbf{- 1}}$ of the square matrix \mathbf{A} exist if and only if \mathbf{A} is regular.
Then holds $\quad \mathbf{A}^{\mathbf{- 1}}=\frac{\mathbf{1}}{\operatorname{det} \mathbf{A}} \operatorname{adj} \mathbf{A}$,
Note that

- adjoint matrix adj \mathbf{A} is defined as the transpose of matrix of cofactors $A_{i j}^{*}$, that is
$\operatorname{adj} \mathbf{A}=\left(\begin{array}{cccc}A_{11}^{*} & A_{12}^{*} & \cdots & A_{1 n}^{*} \\ A_{21}^{*} & A_{22}^{*} & \ldots & A_{2 n}^{*} \\ \vdots & \vdots & \ldots & \vdots \\ A_{n 1}^{*} & A_{n 2}^{*} & \ldots & A_{n n}^{*}\end{array}\right)^{T}=\left(\begin{array}{cccc}A_{11}^{*} & A_{21}^{*} & \cdots & A_{n 1}^{*} \\ A_{12}^{*} & A_{22}^{*} & \ldots & A_{n 2}^{*} \\ \vdots & \vdots & \ldots & \vdots \\ A_{1 n}^{*} & A_{2 n}^{*} & \ldots & A_{n n}^{*}\end{array}\right)$
Example 1.2.4: Find the inverse matrix $\mathbf{A}^{\mathbf{- 1}}$ of the matrix $\mathbf{A}=\left(\begin{array}{rrr}2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1\end{array}\right)$.
Solution: Determinant of matrix A: det $\mathbf{A}=\left|\begin{array}{rrr}2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1\end{array}\right|=-2+6+0-3+0-2=-1$, the matrix of cofactors $\mathrm{A}_{\mathrm{ij}}^{*}$:

$$
\mathrm{A}_{\mathrm{ij}}^{*}=\left(\begin{array}{llll}
(-1)^{1+1}\left(\begin{array}{rr}
-1 & 0 \\
2 & 1
\end{array}\right) & (-1)^{1+2}\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right) & (-1)^{1+3}\left(\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right) \\
(-1)^{2+1}\left(\begin{array}{rr}
2 & 3 \\
2 & 1
\end{array}\right) & (-1)^{2+2}\left(\begin{array}{rr}
2 & 3 \\
-1 & 1
\end{array}\right) & (-1)^{2+3}\left(\begin{array}{rr}
2 & 2 \\
-1 & 2
\end{array}\right) \\
(-1)^{3+1}\left(\begin{array}{rr}
2 & 3 \\
-1 & 0
\end{array}\right) & (-1)^{3+2}\left(\begin{array}{ll}
2 & 3 \\
1 & 0
\end{array}\right) & (-1)^{3+3}\left(\begin{array}{rr}
2 & 2 \\
1 & -1
\end{array}\right)
\end{array}\right)=\left(\begin{array}{rrr}
-1 & -1 & 1 \\
4 & 5 & -6 \\
3 & 3 & -4
\end{array}\right),
$$

the adjoint matrix adj $\mathbf{A}=\left(\begin{array}{rrr}-1 & -1 & 1 \\ 4 & 5 & -6 \\ 3 & 3 & -4\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{rrr}-1 & 4 & 3 \\ -1 & 5 & 3 \\ 1 & -6 & -4\end{array}\right)$,
$\mathbf{A}^{\mathbf{- 1}}=\frac{1}{\operatorname{det} \mathbf{A}} \mathbf{a d j} \mathbf{A}=\frac{1}{-1}\left(\begin{array}{rrr}-1 & 4 & 3 \\ -1 & 5 & 3 \\ 1 & -6 & -4\end{array}\right)=\left(\begin{array}{rrr}1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4\end{array}\right)$.
Test: A. $\mathbf{A}^{\mathbf{- 1}}=\left(\begin{array}{rrr}2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1\end{array}\right) \cdot\left(\begin{array}{rrr}1 & -4 & -3 \\ 1 & -5 & -3 \\ -1 & 6 & 4\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

1.2. Systems of Linear Equations

1.2.3. Definition

By a system of \boldsymbol{m} linear equations in \boldsymbol{n} unknowns we understand the system

$a_{11} x_{1}$	+	$a_{12} x_{2}$	+	\ldots	+	$a_{1 n} x_{n}$	$=$	b_{1}
$a_{21} x_{1}$	+	$a_{22} x_{2}$	+	\ldots	+	$a_{2 n} x_{n}$	$=$	b_{2}
\vdots								
$a_{m 1} x_{1}$	+	$a_{m 2} x_{2}$	+	\ldots	+	$a_{m n} x_{n}$	$=$	b_{m}

where

- $x_{1}, x_{2}, \ldots, x_{n}$ are called unknowns,
- real numbers $a_{i j}(i=1,2, \ldots, m, j=1,2, \ldots, n)$ are called coefficients,
- real numbers b_{i} are called right-hand side,
- if real numbers $b_{i}=0(i=1,2, \ldots, m)$ system of linear equations is called homogeneouse, if exists $b_{i} \neq 0$, system of linear equations is called nonhomogeneouse.
- matrix

$$
\mathbf{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ldots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) \text { is called matrix of the system, }
$$

- matrix

$$
\mathbf{X}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \text { is called solution vector, }
$$

- matrix $\mathbf{B}=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right)$ is called right-hand side vector,
- matrix $\mathbf{A} \left\lvert\, \mathbf{B}=\left(\begin{array}{rrrrr}a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\ a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}\end{array}\right)\right.$ is called augmented matrix of the system.

Then a system of equations can be rewritten in the matrix form A.X = B .

Theorem of Frobenius:

The system of m linear equations in n unknowns is solvable if and only if rank of matrix of the system is equal to rank of the augmented matrix of the system: $\mathbf{h}(\mathbf{A})=\mathbf{h}(\mathbf{A} \mid \mathrm{B})=\mathbf{h}$.

If $\mathbf{h}=\boldsymbol{n}$, then system has only one solution ,
If $\mathbf{h}<\boldsymbol{n}$, then system has \boldsymbol{n} - \mathbf{h} linearly independent solutions and every solution of this system is a linear combination of this n-h solutions.

The homogeneouse system of \boldsymbol{m} linear equations in \boldsymbol{n} unknowns A.X $=\mathbf{O}$
a) has always the trivial (zero) solution $\mathbf{X}=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$,
b) has a non-trivial solution if and only if $\operatorname{det} \mathbf{A}=\mathbf{0}$.

1.3.2. Gaussian Elimination

Given system of n linear equations in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$ we solve in a serie of steps:

1. The essence of the Gaussian elimination consists in transforming the system of m linear equations in n unknowns into equivalent system (possesses the same solution) whose augmented matrix is upper triangular, i.e. the matrix $\left(\begin{array}{ccccc}a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\ 0 & a_{22} & \cdots & a_{2 n} & b_{2} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & a_{m n} & b_{m}\end{array}\right)$.
Elimination procedures rely on the manipulation of equations or, equivalently, the rows of the augmented matrix of the system. There are various elementary row operations used which do not alter the solution of the equations:

- multiply a row by a constant,
- interchange any two row,
- add or subtract one row from another.

2. We solve the last equation for x_{n}.
3. We then solve the penultimate equation and eliminate x_{n-1} in terms of x_{n}.
4. We repeat the process in turn $x_{n-2}, x_{n-3}, \ldots, x_{2}$ until we arrive at a final equation for x_{1}, which we can then solve.

$$
\begin{aligned}
x_{1}+2 x_{2}+5 x_{3} & =-9 \\
x_{1}-x_{2}+3 x_{3} & =2 \\
3 x_{1}-6 x_{2}-x_{3} & =25
\end{aligned} .
$$

Example 1.3.1: Solve the system of equations: $x_{1}-x_{2}+3 x_{3}=2$.

Solution: $m=n=3$

\boldsymbol{x}_{1}	\boldsymbol{x}_{2}	\boldsymbol{x}_{3}	\mathbf{b}	$\boldsymbol{\Sigma}$	operation
1	2	5	-9	-1	
1	-1	3	2	5	$\mathrm{r}_{2}-\mathrm{r}_{1}$
3	-6	-1	25	21	$\mathrm{r}_{3}-3 \mathrm{r}_{1}$
1	2	5	-9	-1	
0	-3	-2	11	6	
0	-12	-16	52	24	$\mathrm{r}_{3}-4 \mathrm{r}_{2}$
1	2	5	-9	-1	
0	-3	-2	11	6	
0	0	-8	8	0	

$\mathbf{h}(\mathbf{A})=\mathbf{h}(\mathbf{A} \mid \mathbf{B})=n=3$,
equivalent upper triangular augmented matrix of the system:
(1) $x_{1}+2 x_{2}+5 x_{3}=-9$
(2) $-3 x_{2}-2 x_{3}=11$
(3) $\quad-8 x_{3}=8 \Rightarrow$ we solve $x_{3}=-1$,
we solve then (2): $\quad x_{2}=-\frac{11+2 x_{3}}{3}=-\frac{11+2(-1)}{3}=-3$,
and we solve finally (1): $x_{1}=-9-2 x_{2}-5 x_{3}=-9+6+5=2$

Example 1.3.2: Solve the system of equations

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=3 \\
& x_{1}+x_{2}-3 x_{3}=-1 \\
& x_{1}+2 x_{2}-3 x_{3}=1 \\
& 2 x_{1}+x_{2}-2 x_{3}=1
\end{aligned} .
$$

Solution: $m=4, n=3$.

\boldsymbol{x}_{1}	\boldsymbol{x}_{2}	\boldsymbol{x}_{3}	\mathbf{b}	$\boldsymbol{\Sigma}$	operation
1	1	1	3	6	
1	1	-3	-1	-2	$\mathrm{r}_{2}-\mathrm{r}_{1}$
1	2	-3	1	1	$\mathrm{r}_{3}-\mathrm{r}_{1}$
2	1	-2	1	2	$\mathrm{r}_{4}-2 \mathrm{r}_{1}$
1	1	1	3	6	
0	0	-4	-4	-8	$\mathrm{r}_{2} \leftrightarrow \mathrm{r}_{3}$
0	1	-4	-2	-5	
0	-1	-4	-5	-10	
1	1	1	3	6	
0	1	-4	-2	-5	
0	0	-4	-4	-8	
0	-1	-4	-5	-10	$\mathrm{r}_{4}+\mathrm{r}_{2}$
1	1	1	3	6	
0	1	-4	-2	-5	
0	0	-4	-4	-8	
0	0	-8	-7	-15	$\mathrm{r}_{4}-2 \mathrm{r}_{3}$
1	1	1	3	6	
0	1	-4	-2	-5	
0	0	-4	-4	-8	
0	0	0	1	1	

$\mathbf{h}(\mathbf{A})=3, \mathbf{h}(\mathbf{A} \mid \mathbf{B})=4 \Rightarrow \mathbf{h}(\mathbf{A}) \neq \mathbf{h}(\mathbf{A} \mid \mathbf{B}) \Rightarrow$ system has no solution
(last row: $0 x_{1}+0 \mathrm{x}_{2}+0 \mathrm{x}_{3}=1$ is not true.)

Example 1.3.3: Solve the system of equations:

$$
\begin{aligned}
4 x_{1}+x_{2}-3 x_{3}-x_{4} & =0 \\
2 x_{1}+3 x_{2}+x_{3}-5 x_{4} & =0 \\
x_{1}-2 x_{2}-2 x_{3}+2 x_{4} & =0
\end{aligned}
$$

Solution: homogeneous systém with $m=3, n=4$.

\boldsymbol{x}_{1}	\boldsymbol{x}_{2}	\boldsymbol{x}_{3}	\boldsymbol{x}_{4}	\boldsymbol{b}	$\boldsymbol{\Sigma}$	operation
1	-2	-2	2	0	-1	
2	3	1	-5	0	1	$\mathrm{r}_{2}-2 \mathrm{r}_{1}$
4	1	-3	-1	0	1	$\mathrm{r}_{3}-4 \mathrm{r}_{1}$
1	-2	-2	2	0	-1	
0	7	5	-9	0	3	$\mathrm{r}_{2} \cdot 9$
0	9	5	-9	0	5	$\mathrm{r}_{3} \cdot(-7)$
1	-2	-2	2	0	-1	
0	63	45	-81	0	27	$\mathrm{r}_{2}: 9$
0	-63	-35	63	0	-35	$\mathrm{r}_{3}+\mathrm{r}_{2}$
1	-2	-2	2	0	-1	
0	7	5	-9	0	3	
0	0	10	-18	0	-8	

$\mathbf{h}(\mathbf{A})=\mathbf{h}(\mathbf{A} \mid \mathbf{B})=3, n=4 \Rightarrow \mathbf{n}-\mathbf{h}=\mathbf{4 - 3} \mathbf{= 1} \mathbf{1}$ linearly independent solution $x_{4}=p$.
equivalent upper triangular augmented matrix of the system:
(1) $x_{1}-2 x_{2}-2 x_{3}+2 x_{4}=0$
(2) $7 x_{2}+5 x_{3}-9 x_{4}=0$
(3) $10 x_{3}-18 x_{4}=0$
(3) $10 x_{3}-18 p=0 \Rightarrow x_{3}=\frac{9 p}{5}$,
(2) $7 x_{2}+5 x_{3}-9 p=0 \quad \Rightarrow \quad x_{2}=\frac{9 p-5 x_{3}}{7}=\frac{9 p-9 p}{7}=0$,

$$
\begin{gather*}
x_{1}-2 x_{2}-2 x_{3}+2 p=0 \quad \Rightarrow \tag{1}\\
x_{1}=-2 p+2 x_{2}+2 x_{3}=-2 p+\frac{18 p}{5}+0=\frac{8 p}{5} .
\end{gather*}
$$

For example: $p=0: x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=0 \quad$ (trivial solution),

$$
\begin{aligned}
& p=5: x_{1}=8, x_{2}=0, x_{3}=9, x_{4}=5, \\
& p=-5: x_{1}=-8, x_{2}=0, x_{3}=-9, x_{4}=-5
\end{aligned}
$$

1.3.3. Cramer's Rule

The system of n linear equations in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$

$a_{11}{ }_{1}$	+	$a_{12}{ }_{2}$	+	\ldots	+	$a_{1 n}{ }^{X_{n}}$	=	b_{1}
$a_{21}{\underset{1}{x_{1}}}$	+	$a_{22}{ }^{2}$	+		+	$a_{2 n} x_{n}$		b_{2}
$a_{n 1} \chi_{1}$	+	$a_{n 2} X_{2}$	+	\ldots	+	$a_{n n} x_{n}$	$=$	b_{n}

with a regular matrix of the system has a unique solution $x_{1}, x_{2}, \ldots, x_{n}$,
where

$$
x_{i}=\frac{\operatorname{det} \mathbf{D}_{i}}{\operatorname{det} \mathbf{D}}, i=1,2, \ldots, n
$$

here det \mathbf{D} is the determinant of the matrix of the system and $\operatorname{det} \mathbf{D}_{i}$ is the determinant obtaining by replacing the i th column of det D by the column of elements forming the righthand side of equations.

$$
\begin{aligned}
& 3 x_{1}+x_{2}+2 x_{3}=5 \\
& x_{1}-5 x_{2}+2 x_{3}=7 \\
& 7 x_{2}+3 x_{3}=-7
\end{aligned}
$$

Example1.3.4: Solve the system of equations:

Solution: $m=n=3$.

$$
\begin{aligned}
& \operatorname{det} \mathbf{D}=\left|\begin{array}{rrr}
3 & 1 & 2 \\
1 & -5 & 2 \\
0 & 7 & 3
\end{array}\right|=-76(\neq 0) . \\
& \operatorname{det} \mathbf{D}_{1}=\left|\begin{array}{rrr}
5 & 1 & 2 \\
7 & -5 & 2 \\
-7 & 7 & 3
\end{array}\right|=-152, \quad \operatorname{det} \mathbf{D}_{2}=\left|\begin{array}{rrr}
3 & 5 & 2 \\
1 & 7 & 2 \\
0 & -7 & 3
\end{array}\right|=76, \quad \operatorname{det} \mathbf{D}_{3}=\left|\begin{array}{ccc}
3 & 1 & 5 \\
1 & -5 & 7 \\
0 & 7 & -7
\end{array}\right|=0, \\
& x_{1=} \frac{\operatorname{det} \mathbf{D}_{1}}{\operatorname{det} \mathbf{D}}=\frac{-152}{-76}=2, \quad x_{2}=\frac{\operatorname{det} \mathbf{D}_{2}}{\operatorname{det} \mathbf{D}}=\frac{76}{-76}=-1, \quad x_{3}=\frac{\operatorname{det} \mathbf{D}_{3}}{\operatorname{det} \mathbf{D}}=\frac{0}{-76}=0 .
\end{aligned}
$$

2. DIFFERENTIAL CALCULUS FUNCTIONS OF ONE REAL VARIABLE

2.1. Functions of One Real Variable

2.1.1. Definitions and Basic Properties

A real-value function \boldsymbol{f} relates each element \mathbf{x} of a set $D(f)$, with exactly one element \boldsymbol{y} of another set $H(f)$. We express the relationship by the equation $y=f(x)$ or $f: x \rightarrow y$.

- $D(f)$ is the domain of \mathbf{f} and $H(f)$ is the range of \mathbf{f} or codomain.
- Symbol \boldsymbol{x} is an independent variable or argument of the function and the symbol \boldsymbol{y} is the dependent variable.
- The graph of function is the set of ordered pairs $[x, f(x)]$ for $\forall x \in D(f)$.

Bounded functions

We say that the function f is bounded above on a set $M \subseteq D(f)$ if there exists a number h such that

$$
\begin{equation*}
f(x) \leq h \quad \forall x \in M \tag{Fig.1a}
\end{equation*}
$$

we say that the function f is bounded below on a set $M \subseteq D(f)$ if there exists a number d such that $\quad f(x) \geq d \quad \forall x \in M \quad$ (Fig. 1b),
the function f is bounded provided it is bounded both from below and from above, it is if there exists a number k for which

$$
|f(x)| \leq k \quad \forall x \in M
$$

(Fig. 1c).

Fig. 1a

Fig. 1b

Fig. 1c

Monotonic functions

We say that the function f is increasing on an interval $I \subseteq D(f)$ provided that

$$
\text { for } \forall x_{1}, x_{2} \in I: \quad x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right) \quad \text { (Fig. 2a), }
$$

we say that the function f is decreasing on an interval $I \subseteq D(f)$ provided that
for $\forall x_{1}, x_{2} \in I$:
$x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$
(Fig. 2b),
we say that the function f is nondecreasing on an interval $I \subseteq D(f)$ provided that
for $\forall x_{1}, x_{2} \in I$:
$x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)$
(Fig. 2c),
We say that the function f is nonincreasing on an interval $I \subseteq D(f)$ provided that for $\forall x_{1}, x_{2} \in I$:

$$
\begin{equation*}
x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right) \tag{Fig.2d}
\end{equation*}
$$

Fig. 2a

Fig. 2b

Fig. 2c

Fig. 2d

Periodic function

We say that the function f is periodic with period T on $D(f)$ provided that for $\forall x \in D(f): \quad \quad f(x+T)=f(x)$ (Fig. 3).

One-to-one function

We say that the function f is one-to-one on a set $M \subseteq D(f)$ provided that
for $\forall x_{1}, x_{2} \in M$:

Fig. 3

$$
x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
$$

Fig. 4

Composite function

Let two functions $y=f(u)$ and $u=g(x)$ be given such that the domain of $f(u)$ intersects with the range of $g(x)$. Then the composite function $y=h(x)$ is defined to be the function h, for which domain D consists of all $x \in D(g))$ such that $g(x)$ lie in $D(f)$ and $h(x)=f(g(x))$ for every $x \in D(h)$, (Fig. 5).

Fig. 5

Fig. 6

Inverse functions

Let be an one-to-one function f with domain $D(f)$ and range $H(f)$, i.e. for every $y \in H(f)$ there exists $x \in D(f) \mathrm{x} \in \mathrm{I}$ for which $y=f(x)$. Then we define inverse function of f with domain $H(f)$ and range $D(f)$ by $x=f^{-1}(y)$ if and only if $f(x)=y$.
Properties of inverse function:

- Graph of the function f^{-1} is the reflection of the graph of f in the line $y=x$ (Fig. 6).
- Composition of inverse functions:
$f^{-1}(f(y))=y \quad$ for $\forall y \in H(f), \quad f^{-1}(f(x))=x \quad$ for $\forall x \in D(f)$.
- For domain and range of the inverse functions is valid:

$$
D(f)=H\left(f^{-1}\right), \quad H(f)=D\left(f^{-1}\right)
$$

Even and odd functions

We say that the function f is even on an interval $(a,-a) \subseteq D(f)$ provided that for $\forall x \in(a,-a)$:
$f(-x)=f(x)$.
Graph of the even functions is symmetrical about vertical axis (Fig. 7a).
We say that the function f is odd on an interval $(a,-a) \subseteq D(f)$ provided that for $\forall x \in(a,-a): \quad f(-x)=-f(x)$.
Graph of the odd functions is symmetrical about the origin (Fig.7b).

Fig. 7a

Fig. 7b

2.1.2. Elementary Functions

Polynomial functions

A polynomial function has the general form $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, where n is a positive integer and coefficients $a_{i}, i=0,1,2, \ldots, n, a_{n} \neq 0$ are real numbers. The index n is called the degree of the polynomial. Domain $D(f)=R=(-\infty,+\infty)$.
$\boldsymbol{n}=\mathbf{0}$: constant function (polynomial of degree 0): $y=a_{0}=k$
Graph is a line parallel to x-axis, constant function is not one-to-one function (Fig. 8),

Fig. 8

Fig. 9a

Fig. 9b
$\mathbf{n}=\mathbf{1}$: linear function (polynomial of degree 1): $y=a_{1} x+a_{0}=k x+q$
Graph is a line with slope $k=\operatorname{tg} \alpha$ which intersects y-axis at $[0, q]$.

For $k>0$ is linear function increasing (Fig. 9a), for $k<0$ is decreasing (Fig. 9b),
linear function is one-to-one.
$\boldsymbol{n}=2$: quadratic function (polynomial of degree 2): $y=a_{2} x^{2}+a_{1} x+a_{0}=a x^{2}+b x+c$
Graph is a parabola, it is not one-to-one function (Fig. 10a, b).
For $a>0$ it is bounded below (Fig. 10a), for $a<0$ it is bounded above (Fig. 10b).

Fig. 10a

Fig. 10b

Rational function

A rational function has the general form $y=\frac{P_{m}(x)}{Q_{n}(x)}$,
where $P_{m}(x)$ and $Q_{n}(x)$ are polynomials of degree m a n.
Domain $D(f)=R-\{x \in R: Q(x)=0\}$.
If $m<n$ it is said to be a proper rational function, if $m \geq n$ it is improper rational function.
An improper rational function can always be expressed as a polynomial function plus a proper rational function by algebraic division.

Exponential function

An exponential function has the general form $y=a^{x}$,
where real constant a is called base, $a>0, a \neq 1$.
Domain $D(f)=R=(-\infty,+\infty)$, range $H(f)=R_{+}=(0,+\infty)$.
Graph of the exponential function is called exponential curve (Fig. 11a, b, c).

Fig. 11a

Fig. 11b

Fig. 11c

It is bounded below and it is increasing for $a>1$ (Fig. 11a) and it is decreasing for $0<a<1$
(Fig. 11b), it is one-to-one function and it intersects y-axis at [0, 1].

The standard exponential function is $y=e^{x}$, (Fig. 11c), Euler's number $\mathbf{e}=\mathbf{2 , 7 1 8 2 8} \ldots$. Let us recall some basic properties:
$a^{r} \cdot a^{s}=a^{r+s}$,
$\frac{a^{r}}{a^{s}}=a^{r-s}$,
$\left(a^{r}\right)^{s}=a^{r s}$,
$a^{0}=1$.

Logarithmic functions

A logarithmic function has the general form $y=\log _{a} x$,
where real constant a is called base, $a>0, a \neq 1$.
It is defined as inverse function of exponential function $y=a^{X}$, that is:
Domain $D(f)=R_{+}=(0,+\infty)$, range $H(f)=R=(-\infty,+\infty)$.
Graph of the logarithmic function is called logarithmic curve (Fig. 12a, b, c).

Fig. 12a

Fig. 12b

Fig. 12c

For $a>1$ it is increasing (Fig. 12a), for $0<a<1$ it is decreasing (Fig. 12b), it is one-to-one function and it intersects x-axis at $[1,0]$.

The inverse function of standard exponential function $\mathrm{y}=y=e^{x}$ is called the natural logarithmic function and is written $y=\ln x$ (Fig. 12c).

Let us recall some basic properties:
for $u>0, v>0$ is valid: $\quad \log _{a} u . v=\log _{a} u+\log _{a} v, \quad \log _{a} a=1 \quad\left(a^{1}=a\right)$,
$\log _{a} \frac{u}{v}=\log _{a} u-\log _{a} v, \quad \log _{a} 1=0 \quad\left(a^{0}=1\right), \quad \log _{a} u^{v}=v \log _{a} u$.

Trigonometric (circular) functions

All trigonometric functions are periodic, hence trigonometric functions are not one-to-one.
Functions $y=\sin x$ and $y=\cos x$ have basic properties:
Domain $D(f)=R=(-\infty,+\infty)$, range $H(f)=<-1,1>$, hence they are bounded (Fig. 13a, b).

Fig. 13a

Fig. 13b

Functions are periodic with period $T=2 \pi$:

$$
\sin (x+2 k \pi)=\sin x, \quad \cos (x+2 k \pi)=\cos x, k \text { is integer number. }
$$

Function $y=\sin x$ is odd function: $\sin (-x)=-\sin x$,
Function $y=\cos x$ is even function: $\cos (-x)=\cos x$.
Functions $y=\operatorname{tg} x=\frac{\sin x}{\cos x}$ and $y=\operatorname{cotg} x=\frac{\cos x}{\sin x}$ have basic properties:
Domain $D(\operatorname{tg} x)=R-\left\{(2 k+1) \frac{\pi}{2}\right\}, D(\operatorname{cotg} x)=R-\{k \pi\}, k$ is integer number, range $H(\operatorname{tg} x)=H(\operatorname{cotg} x)=R=(-\infty,+\infty)$, hence they are not bounded (Fig. 14a, b).

Functions are periodic with period $T=\pi$:

$$
\operatorname{tg}(x+k \pi)=\operatorname{tg} x, \operatorname{cotg}(x+k \pi)=\operatorname{cotg} x, k \text { is integer number. }
$$

Functions $y=\operatorname{tg} x$ and $y=\operatorname{cotg} x$ are odd functions:

$$
\operatorname{tg}(-x)=-\operatorname{tg} x, \quad \operatorname{cotg}(-x)=-\operatorname{cotg} x
$$

Function $y=\operatorname{tg} x$ is increasing on the intervals $\left((2 k-1) \frac{\pi}{2},(2 k+1) \frac{\pi}{2}\right)$.
Function $y=\operatorname{cotg} x$ is decreasing on the intervals $(k \pi,(k+1) \pi)$

Fig. 14a

Fig. 14b

Let us recall some basic properties:
$\sin ^{2} x+\cos ^{2} x=1$,
$\sin 2 x=2 \sin x \cos x$,
$\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$,
$\operatorname{tg} x . \operatorname{cotg} x=1$, $\cos 2 x=\cos ^{2} x-\sin ^{2} x$, $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$.

Inverse trigonometric functions

None of the trigonometric functions are one-to-one since they are periodic. In order to define inverses, it is customary to restrict the domains in which the trigonometric functions are one-to-one as follows.

Function $y=\sin x$ is increasing on the interval $\left\langle-\frac{\pi}{2}, \frac{\pi}{2}\right\rangle$, hence it is one-to-one on this interval and it covers the range $<-1,1>$. So its inverse function exists and is denoted by $y=\arcsin x$

We define $y=\arcsin x, x \in<-1,1>$, if and only if, $x=\sin y, y \in<-\frac{\pi}{2}, \frac{\pi}{2}>$.
Domain $D(\arcsin x)=\langle-1,1\rangle$, range $H(\arcsin x)=\left\langle-\frac{\pi}{2}, \frac{\pi}{2}\right\rangle$.
Function $y=\arcsin x$ is increasing on its domain (Fig. 15a).
Function $y=\cos x$ is decreasing on the interval $\langle 0, \pi\rangle$, hence it is one-to-one on this interval and covers the range $<-1,1>$. So its inverse function exists and is denoted by $y=\arccos x$.

We define $\arccos x \quad y=\arccos x, x \in<-1,1\rangle$, if and only if, $x=\cos y, y \in\langle 0, \pi\rangle$.
Domain $D(\arccos x)=\langle-1,1\rangle$, range $H(\arccos x)=\langle 0, \pi\rangle$.
Function $y=\arccos x$ is decreasing on its domain (Fig. 15b).

Fig. 15a

Fig. 15b

Function $y=\operatorname{tg} x$ is increasing on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, hence it is one-to-one on this interval and it covers the range $(-\infty,+\infty)$. So its inverse function exists and is denoted by $y=\arctan x$

We define $y=\arctan x, x \in(-\infty,+\infty)$, if and only if, $x=\operatorname{tg} y, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Domain $D(\arctan x)=(-\infty,+\infty)$, range $H(\arctan x)=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
Function $y=\arctan x$ is increasing on its domain (Fig. 16a).

Function $y=\operatorname{cotg} x$ is decreasing on the interval $(0, \pi)$, hence it is one-to-one on this interval and covers the range $(-\infty,+\infty)$. So its inverse function exists and is denoted by

$$
y=\operatorname{arccot} x
$$

We define $y=\operatorname{arccot} x, x \in(-\infty,+\infty)$. if and only if, $x=\operatorname{cotg} y, \mathrm{y} \in(0, \pi)$.
Domain $\mathrm{D}(\operatorname{arccot} x)=(-\infty,+\infty)$. range $\mathrm{H}(\operatorname{arccot} x)=(0, \pi)$.
Function $y=\operatorname{arccot} x$ is decreasing on its domain (Fig. 16b).

Fig. 16a

Fig. 16b

2.2. Limits of Functions

2.2.1. Definition

Intuitive idea of limit: The notation $\quad \lim _{x \rightarrow a} f(x)=A$
means that as x gets close to a (but does not equal a), $f(x)$ gets close to A (Fig. 17).

Definition of limit:

A function $y=f(x)$ is said to approach a limit A as x approaches the value a if, given small quantity ε, i tis possible to find a positive number δ such that $|f(x)-A|<\varepsilon$ for all $x|x-a|<\delta, x \neq a$, (Fig. 17).

Notation: $\lim _{x \rightarrow a} f(x)=\mathrm{A}$

Symbolic notation of limit:
$\lim _{x \rightarrow a} f(x)=A \Leftrightarrow$ for $\forall \varepsilon>0 \exists \delta>0$, that for
$\forall x \in D(f)$ is valid: $|x-a|<\delta \Rightarrow|f(x)-A|<\varepsilon$.

Two facts regarding limits must be kept in mind:

Fig. 17
a) The limit of a function as x approaches a is independent of the value of the function at a. Even though $\lim _{x \rightarrow a} f(x)$ exists, the value of the function at a may be undefined or may be the same as the limit or may be defined but different from the limit (Fig. 18a, b, c)

Fig. 18a

Fig. 18b

Fig. 18c
b) The limit is said to exist only if the following condition is satisfied:

The limit as x approaches a from left, written $\lim _{x \rightarrow a^{-}} f(x)$, equals the limit as x approaches a from right, written $\lim _{x \rightarrow a^{+}} f(x): \quad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$.

Fig 19a, b show two cases where $\lim _{x \rightarrow a} f(x)$ does not exist.

Fig. 19a

Fig.19b

2.2.2. Basic Rules

Suppose that $\lim _{x \rightarrow a} f(x)=A, \lim _{x \rightarrow a} g(x)=B$, than hold:

- There exists at most one $A \in R$ such that $\lim _{x \rightarrow a} f(x)=A$,
- $\lim _{x \rightarrow a} k f(x)=k \lim _{x \rightarrow a} f(x)=k A, \quad k \in R$,
- $\quad \lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}=A^{n}, \quad n \in N$,
- $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=A \pm B$,
- $\quad \lim _{x \rightarrow a}[f(x) \cdot g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)=A \cdot B$,
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{A}{B} \quad B \neq 0$.

2.2.3. Limits of Selected Functions

- $\lim _{x \rightarrow a} c=c, \quad c \in R$,
- $\lim _{x \rightarrow \infty} \frac{1}{x}=0$,
- $\lim _{x \rightarrow a} x^{n}=a^{n}, \quad a \in R, n \in N$,
- $\lim _{x \rightarrow \pm \infty} \frac{k}{x^{n}}=0, \quad n>0$,
- $\lim _{x \rightarrow+\infty} x^{n}=+\infty, \quad n \in N$,
- $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$,
- $\lim _{x \rightarrow-\infty} e^{x}=0$,
- $\lim ^{+} \ln x=-\infty$, $x \rightarrow 0^{+}$
- $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$,
- $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty$,
- $\lim _{x \rightarrow+\infty} e^{x}=+\infty$,
- $\lim _{x \rightarrow+\infty} \ln x=+\infty$,
- $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$,
(Fig. 19a),
(Fig. 11c),
(Fig. 12c),
- $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}\right)^{x}=e^{a}$.

Example 2.2.1. Find the limits: a) $\quad A=\lim _{x \rightarrow 3} \frac{x}{1-x}, B=\lim _{x \rightarrow 2} \frac{2 x-4}{x^{2}-4}$, c) $C=\lim _{x \rightarrow \infty} \frac{x}{1-x^{3}}$,
d) $D=\lim _{x \rightarrow+\infty} \frac{6 x^{2}+1}{3 x^{2}-2 x+2}$, e) $E=\lim _{x \rightarrow+\infty}\left(\frac{x+6}{x+2}\right)^{x}$.

Solution: a) $\quad A=\frac{3}{1-3}=-\frac{3}{2}$,
b) $B=\lim _{x \rightarrow 2} \frac{2(x-2)}{(x-2)(x+2)}=\lim _{x \rightarrow 2} \frac{2}{x+2}=\frac{2}{2+2}=\frac{1}{2}$,
c) $C=\lim _{x \rightarrow \infty} \frac{x}{1-x^{3}}=\lim _{x \rightarrow \infty} \frac{x}{1-x^{3}} \frac{\frac{1}{x^{3}}}{\frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\left(\frac{1}{x}\right)^{2}}{\left(\frac{1}{x}\right)^{3}-1}=\frac{0}{0-1}=0$,
d) $D=\lim _{x \rightarrow+\infty} \frac{6 x^{2}+1}{3 x^{2}-2 x+2}=\lim _{x \rightarrow+\infty} \frac{6 x^{2}+1}{3 x^{2}-2 x+2} \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{6+\left(\frac{1}{x}\right)^{2}}{3-2 \frac{1}{x}+2\left(\frac{1}{x}\right)^{2}}=\frac{6}{3}=2$,
e) $E=\lim _{x \rightarrow+\infty}\left(\frac{x+6}{x+2}\right)^{x}=\lim _{x \rightarrow+\infty}\left(\frac{x+2+4}{x+2}\right)^{x}==\lim _{x \rightarrow+\infty}\left(1+\frac{4}{x+2}\right)^{x+2-2}=$

$$
=\lim _{x \rightarrow+\infty}\left(1+\frac{4}{x+2}\right)=\lim _{x \rightarrow+\infty}\left(1+\frac{4}{x+2}\right)^{x+2} \cdot\left(1+\frac{4}{x+2}\right)^{-2}=e^{4} \cdot 1=e^{4} .
$$

2.3. Continuity of Functions

A function $y=f(x)$ is said to be continuous at a point \boldsymbol{a} if $\lim _{x \rightarrow a} f(x)=f(a)$.
Note that the definition requires three conditions to be satisfied:
a) $f(x)$ must be defined at the point a ,
b) $f(x)$ must have a limit at point a,
c) this limit must be equal to the value $f(a)$.

We say that a function $f(x)$ is continuous on open interval $(\boldsymbol{a}, \boldsymbol{b})$, if it is continuous at each point of the interval (\mathbf{a}, \mathbf{b}).

Fig. 20a

Fig. 20b

Consider the two functions (Fig. 20a, b). Function $f(x)$ in Fig. 20a we can draw the whole curve without lifting the pencil from the paper, but this is not possible for the function $g(x)$ in Fig. 20b. Hence the function $f(x)$ is continuous everywhere, while the function $g(x)$ is continuous on intervals $(-\infty, 0)$ and $(0,+\infty)$, and it has a discontinuity at $x=0$.

Properties of continuous functions:

- Constant functions are continuous.
- Sums, differences, and products of continuous functions are continuous.
- Quotients and rational powers of continuous functions (where defined) are continuous.
- The composite function $f(g(x))$ is continuous at a if g is continuous at a and f is continuous at $g(a)$.

2.4. The Derivative of Function

2.4.1. Definition

Let $y=f(x)$ be a function and point $x_{0} \in \mathrm{D}(\mathrm{f})$. The derivative of the function $\mathbf{f}(\mathbf{x})$ at the point x_{0} is defined by limits

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{\Delta x \rightarrow 0} \frac{\Delta f\left(x_{0}\right)}{\Delta x} .
$$

The derivative is denoted by symbols: $f^{\prime}\left(x_{0}\right), y^{\prime}\left(x_{0}\right), \frac{d f\left(x_{0}\right)}{d x}, \frac{d y\left(x_{0}\right)}{d x}$.
If derivative $f^{\prime}\left(x_{0}\right)$ is a finite number, we say that function $f(x)$ is differentiable at x_{0}.
Let $f(x)$ be a function differentiable at any point x from (a, b). Then we say that the function is differentiable on interval (a, b).

The function $f^{\prime}(x)$ is called the derivative function of $f(x)$.
The process is called differentiation.

Fig. 21
Example 2.4.1: Find the derivative of the function $y=f(x)=c$ at point x_{0}.
Solution: $f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{c-c}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{0}{\Delta x}=\lim _{\Delta x \rightarrow 0} 0=0$.
Example 2.4.2: Find the derivative of the function $y=x$ at point x_{0}.
Solution: $f^{\prime}\left(x_{0}\right)=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\left(x_{0}+\Delta x\right)-\left(x_{0}\right)}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{\Delta x}=$

$$
=\lim _{\Delta x \rightarrow 0} 1=1
$$

Geometric sense of derivative

The derivative $f^{\prime}\left(x_{0}\right)$ is the slope k_{t} of the tangent t to the graph of function $y=f(x)$ at point $\mathrm{T}\left[x_{0}, y_{0}\right]=\mathrm{T}\left[x_{0}, f\left(x_{0}\right)\right]: k=k_{t}=f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$, (Fig. 21).

The tangent t to the graph of function $y=f(x)$ at point $=\mathrm{T}\left[x_{0}, f\left(x_{0}\right)\right]$ is described by equation

$$
y-y_{0}=k_{t}\left(x-x_{0}\right) \quad \text { or } \quad y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right),
$$

The normal line n to the graph of function $y=f(x)$ at point $=\mathrm{T}\left[x_{0}, f\left(x_{0}\right)\right]$ has slope $k_{n}=-\frac{1}{k_{t}}=-\frac{1}{f^{\prime}\left(x_{0}\right)}$ (while $\left.f^{\prime}\left(x_{0}\right) \neq 0\right)$ and it is described by equation

$$
\mathrm{y}-\mathrm{y}_{0}=\mathrm{k}_{\mathrm{n}}\left(\mathrm{x}-\mathrm{x}_{0}\right) \quad \text { or } \quad y-f\left(x_{0}\right)=-\frac{1}{f^{\prime}\left(x_{0}\right)}\left(x-x_{0}\right) .
$$

Example 2.4.3: Find the equations of the tangent and normal line of the function $y=x^{2}$ at point $\mathrm{T}[3, ?]$.

Solution: $y_{0}=3^{2}=9$, that is $\mathrm{T}[3,9]$,
slope k_{t} of the tangent $t: y^{\prime}=2 x, k_{t}=y^{\prime}(3)=2.3=6$,
the equation of the tangent $t: y-9=6(x-3)$,
slope k_{n} and the equation of the normal line $n: k_{n}=-\frac{1}{6}, \quad y-9=-\frac{1}{6}(x-3)$.

Physical sense of derivative

The derivative $f^{\prime}\left(t_{0}\right)$ is the instantaneous velocity v of physical point $\mathrm{T}\left[t_{0}, f\left(t_{0}\right)\right]$
at time $t_{0}: \quad v\left(t_{0}\right)=f^{\prime}\left(t_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(t_{0}+h\right)-f\left(t_{0}\right)}{h}$.

2.4.2. Basic Rules for differentiation

Let $f(x)$ and $g(x)$ be functions differentiable at point x, let $c \in R$ be a constant. Then the function $c . f(x), f(x) \pm g(x), f(x) . g(x)$ and $\frac{f(x)}{g(x)},(g(x) \neq 0)$ are differentiable at point x. The following hold:

- $\left((f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)\right.$,
- $(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$ and hence for $g(x)=c$: • $(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x)$
- $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{g^{2}(x)}$,
- the derivative of a composite function (the chain rule):

Let $g(x)$ be a function differentiable at point x and f be a function differentiable at point $g(x)$, then the composite function $f(g(x))$ is differentiable at point x, and $(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$.

- If a function $f(x)$ is differentiable at point x_{0}, then $f(x)$ is continuous at point x_{0}.
- L'Hospital rule (for limits of fraction with infinite denominator)

Let for $a \in \mathrm{R}$ be $\lim _{x \rightarrow a} f(x)=0, \lim _{x \rightarrow a} g(x)=0$, respectively $\lim _{x \rightarrow a} f(x)= \pm \infty, \lim _{x \rightarrow a} g(x)= \pm \infty$, and $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists.
Then also exists $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ and it holds $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$.

2.4.3. Derivatives of Selected Functions

- $(c)^{\prime}=c^{\prime}=0$,
for $\forall x \in R$,
- $\left(x^{n}\right)^{\prime}=n x^{n-1}$
- $\left(x^{a}\right)^{\prime}=a x^{a-1}$
- $\left(e^{X}\right)^{\prime}=e^{x} \quad$ for $\forall x \in R$,
- $\left(a^{x}\right)^{\prime}=a^{x} \ln a$
- $(\ln |x|)^{\prime}=\frac{1}{x} \quad$ for $\forall x \in R, x \neq 0$,
- $\left(\log _{a}|x|\right)^{\prime}=\frac{1}{x \ln a} \quad$ for $\forall x \in R, x \neq 0$, for $\forall a \in R, a>0, a \neq 1$,
- $(\sin x)^{\prime}=\cos x \quad$ for $\forall x \in R$,
- $(\cos x)^{\prime}=-\sin x \quad$ for $\forall x \in R$,
- $(\operatorname{tg} x)^{\prime}=\frac{1}{\cos ^{2} x} \quad$ for $\forall x \in R, x \neq(2 \mathrm{k}+1) \frac{\pi}{2}$,
- $(\operatorname{cotg} x)^{\prime}=-\frac{1}{\sin ^{2} x}$ for $\forall x \in R, x \neq k \pi$,
- $(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} \quad$ for $\forall x \in(-1,1)$,
- $(\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} \quad$ for $\forall x \in(-1,1)$,
- $(\arctan x)^{\prime}=\frac{1}{1+x^{2}} \quad$ for $\forall x \in R$,
- $(\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} \quad$ for $\forall \mathrm{x} \in R$.

Example 2.4.4: Find the derivatives of the function at point $\mathrm{x} \in \mathrm{D}(\mathrm{f})$:
a) $y=2 x^{4}+3 x^{2}-4 x+1$

Solution: $y^{\prime}=2.4 x^{4-1}+3.2 x^{2-1}-4.1+0=8 x^{3}+6 x-4$.
b) $y=\frac{4}{x^{3}}+5 x^{2}-\sqrt[4]{x^{3}}$

Solution: $y=4 x^{-3}+5 x^{2}-x^{\frac{3}{4}}$,
$y^{\prime}=4 .(-3) x^{-3-1}+5.2 x^{2-1}-\frac{3}{4} x^{\frac{3}{4}-1}=-12 x^{-4}+10 x-\frac{3}{4} x^{-\frac{1}{4}} \frac{3}{4} x^{\frac{3}{4}-1}$
c) $y=x \cdot \ln x$

Solution: $y^{\prime}=(x)^{\prime} \cdot \ln x+x \cdot(\ln x)^{\prime}=1 \cdot \ln x+x \cdot \frac{1}{x}=\ln x+1$.
d) $y=e^{x} \cos x$

Solution: $\left.y^{\prime}=\left(e^{x}\right)^{\prime} \cdot \cos x+e^{x}(\cos x)^{\prime}=e^{x} \cos x+e^{x}-\sin x\right)=e^{x}(\cos x-\sin x)$
e) $y=\left(x^{7}-3 x^{2}\right) \sin x$

Solution: $y^{\prime}=\left(x^{7}-3 x^{2}\right)^{\prime} \cdot \sin x+\left(x^{7}-3 x^{2}\right) \cdot(\sin x)^{\prime}=\left(7 x^{6}-6 x\right) \cdot \sin x+\left(x^{7}-3 x^{2}\right) \cdot \cos x$.
e) $y=\frac{\ln x}{2 x}$

Solution: $\mathrm{y}^{\prime}=y^{\prime}=\frac{(\ln x)^{\prime} \cdot 2 x-\ln x \cdot(2 x)^{\prime}}{(2 x)^{2}}=\frac{\frac{1}{x} 2 x-\ln x \cdot 2}{4 x^{2}}=\frac{2-2 \ln x}{4 x^{2}}=\frac{2(1-\ln x)}{4 x^{2}}=\frac{1-\ln x}{2 x^{2}}$.
f) $y=\operatorname{tg} x=\frac{\sin x}{\cos x}$

Solution: $y^{\prime}=\frac{(\sin x)^{\prime} \cdot \cos x-\sin x \cdot(\cos x)^{\prime}}{(\cos x)^{2}}=\frac{\cos x \cdot \cos x-\sin x \cdot(-\sin x)}{(\cos x)^{2}}=\frac{1}{(\cos x)^{2}}$.
f) $y=e^{3 x+5}$

Solution: $y=e^{u}, u=3 x+5: y^{\prime}=\left(e^{u}\right)^{\prime} \cdot u^{\prime}=e^{u} \cdot 3=e^{3 x+5} \cdot 3=3 e^{3 x+5}$.
g) $y=\sin 3 x$

Solution: $y=\sin u, u=3 x: y^{\prime}=(\sin u)^{\prime} \cdot u^{\prime}=\cos u .3=\cos 3 x .3=3 \cos 3 x$.
h) $y=\sin x^{3}$

Solution: $y=\sin u, u=x^{3}: y^{\prime}=(\sin u)^{\prime} \cdot u^{\prime}=\cos u \cdot 3 x^{2}=\cos x^{3} \cdot 3 x^{2}=3 x^{2} \cdot \cos x^{3}$.
i) $y=\sin ^{3} x=(\sin x)^{3}$

Solution: $y=u^{3}, u=\sin x: y^{\prime}=\left(u^{3}\right)^{\prime} \cdot u^{\prime}=3 u^{2} \cdot \cos x=3 \sin ^{2} x \cdot \cos x$.
j) $y=\left(2 x^{5}-2 x-1\right)^{4}$

Solution: $y=u^{4}, u=2 x^{5}-2 x-1: y^{\prime}=\left(u^{4}\right)^{\prime} \cdot u^{\prime}=4 u^{3} \cdot\left(10 x^{4}-2\right)=$

$$
=4\left(2 x^{5}-2 x-1\right)^{3}\left(10 x^{4}-2\right)=8\left(2 x^{5}-2 x-1\right)^{3}\left(5 x^{4}-1\right) .
$$

i) $y=3 \arcsin \left(4 x^{2}+1\right)$

Solution: $y=3 \arcsin u, u=4 x^{2}+1: \quad y^{\prime}=(3 \arcsin u)^{\prime} \cdot u^{\prime}=3 \frac{1}{\sqrt{1-u^{2}}} \cdot(8 x)=$

$$
=3 \frac{1}{\sqrt{1-\left(4 x^{2}+1\right)^{2}}} .8 x=\frac{24 x}{\sqrt{1-\left(4 x^{2}+1\right)^{2}}} .
$$

2.4.4. Differential of the Function

Let $f(x)$ be a function differentiable at point x_{0}. The differential of the function $f(x)$ at point x_{0} is called the linear function
$d y_{0}=d y\left(x_{0}\right)=d f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot d x=y^{\prime}\left(x_{0}\right) \cdot d x$, where $d x=x-x_{0}$.
The differential $d y(x)$ is used to describe a small change in the dependent variable y, and $d x$ is a small change in the independent variable x.

2.4.5. Highes-Order Derivative

The derivative $y^{\prime}=f^{\prime}(x)$ of the function $f(x)$ is a function itself. We can compute the derivative $\left(y^{\prime}\right)^{\prime}=\left(f^{\prime}(x)\right)^{\prime}$ of the function $f^{\prime}(x) \mathrm{f}^{\prime}(\mathrm{x})$, which is called second derivative of the function $f(x)$ and it is denoted by

$$
y^{\prime \prime}, f^{\prime \prime}(x), \frac{d^{2} y}{d x^{2}}, \frac{d^{2} f}{d x^{2}}
$$

Analogously $\left(y^{\prime \prime}\right)^{\prime}=\left(f^{\prime \prime}(x)\right)^{\prime}=y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=\frac{d^{3} y}{d x^{3}}=\frac{d^{3} f}{d x^{3}}$
is called third derivative of the function $f(x)$, etc.
Generally the \mathbf{n}-th derivative of the function $f(x)$ is defined by

$$
\left(y^{(n-1)}\right)^{\prime}=\left(f^{(n-1)}(x)\right)^{\prime} \text { and denoted by } y^{(n)}, f^{(n)}(x), \frac{d^{n} f(x)}{d x^{n}}, \frac{d^{n} y}{d x^{n}}
$$

Example 2.4.5: Find all derivatives of the function $y=5 x^{4}+3 x-8$.
Solution: $\quad y^{\prime}=20 x^{3}+3$,,

$$
y^{\prime \prime}=60 x^{2}, \quad y^{\prime \prime \prime}=120 x
$$

$$
y^{(4)}=120, \quad y^{(5)}=y^{(6)}=\ldots=0 .
$$

Example 2.4.6: Find first and second derivative of the function $y=x \sin x$ at point $x_{0}=0$.
Solution: $\quad y^{\prime}=1 \cdot \sin x+x \cdot \cos x, \quad y^{\prime}(0)=1 \cdot \sin 0+0 \cdot \cos 0=1.0+0 \cdot 1=0$, $y^{\prime \prime}(0)=2 \cos 0-0 \cdot \sin 0=2 \cdot 1-0.0=2$.

2.4.6. Parametric Differentiation

We say that a function is defined parametrically by $y=f(x)$, where $x=x(t)$ and $y=y(t), t \in\langle a, b\rangle$ is parameter.

For a derivative of this function is hold: $y^{\prime}=f^{\prime}(x)=\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\dot{y}}{\dot{x}}$.
Example 2.4.7: Find a derivative of the function $x=a(t-\sin t), y=a(1-\cos t), a>0, t \in R$.
Solution: $\dot{x}=a(1-\cos t), \dot{y}=a \sin t$ and then $y^{\prime}=\frac{a \sin t}{a(1-\cos t)}=\frac{\sin t}{(1-\cos t)}$.

2.5. Applications of the Derivatives

2.6.1. Basic Theorems

The Mean Value Theorem

Let $y=f(x)$ be a function differentiable on (a, b) and continuous on $\langle a, b\rangle$. Then there is at least one point $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \text {, Fig. } 22 .
$$

Fig. 22
Fig. 23

Rolle's Theorem

Let $y=f(x)$ be a function differentiable on (a, b) and continuous on $\langle a, b\rangle$. If $f(a)=f(b)$, then there exists at least one point $c \in(a, b)$ such that $\quad f^{\prime}(c)=0$, Fig. 23.

Cauchy's Theorem

Let functions $f(x)$ and $g(x)$ be continuous on $\langle a, b\rangle$, function $f(x)$ be differentiable on interval (a, b), function $g(x)$ has a finite derivative $g^{\prime}(x) \neq 0$ on (a, b). Then there exists a point $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

2.5.6. Monotonic Functions and Optimal Value

From the Mean Value Theorem there is valid: Suppose that two functions $f(x)$ and $g(x)$ are differentiable on (a, b) and continuous and bounded on $\langle a, b\rangle$. Then the following statements are true:

If	$f^{\prime}(x)>0$	for $\forall x \in(a, b)$,	then $f(x)$ is increasing on (a, b),
if	$f^{\prime}(x)<0$	for $\forall x \in(a, b)$,	then $f(x)$ is decreasing on (a, b),
if	$f^{\prime}(x) \geq 0$	for $\forall x \in(a, b)$,	then $f(x)$ is nondecreasing on (a, b),
if	$f^{\prime}(x) \leq 0$	for $\forall x \in(a, b)$,	then $f(x)$ is nonincreasing on (a, b),
if	$f^{\prime}(x)=0$	for $\forall x \in(a, b)$,	then $f(x)$ is constant on (a, b).

Definition:

1. A function $f(x)$ with domain $D(f)$ is said to have an absolute maximum (respectively absolute minimum) at point $x_{0} \in D(f)$ if $f(x) \leq f\left(x_{0}\right)$, (respectively if $f(x) \geq f\left(x_{0}\right)$ for $\forall x \in D(f)$. The number $\left.f\left(x_{0}\right)\right)$ is called the absolute maximum (respectively absolute minimum) of $f(x)$ on $D(f)$.
2. The function $f(x)$ is said to have a local or relative maximum (respectively local or relative minimum) at point $x_{0} \in D(f)$ if there is some open interval $(a, b) \subseteq D(f)$ containing x_{0} and $f\left(x_{0}\right)$ is the absolute maximum (respectively absolute minimum) of
$f(x)$ on (a, b). The number $f\left(x_{0}\right)$ is called a local or relative maximum (respectively local or relative minimum) of $f(x)$ on (a, b).
3 An absolute maximum or absolute minimum of $f(x)$ is called an absolute extreme $\mathbf{o f} \mathbf{f}(\mathbf{x})$. A local maximum or local minimum of $f(x)$ is called a local extreme of $f(x)$, Fig 24a,b).

Fig. 24a

Fig. 24b

Proposition:

1. If a function $f(x)$ has a local extreme at point x_{0}, then either $f^{\prime}(x)=0$, or $f^{\prime}(x)$ does not exist.
(When searching for local extremes of a function $f(x)$, in view of this result, it suffices to test only those points x_{0}, for which $f^{\prime}\left(x_{0}\right)=0$ or $f^{\prime}\left(x_{0}\right)$ does not exist. These points are called critical or stationary point.)

2. The first derivative test for extreme

Let $y=f(x)$ be a function continuous on (a, b) and critical point $x_{0} \in(a, b)$.
If $f^{\prime}(x)>0$ on $\left(a, x_{0}\right)$ and $f^{\prime}(x)<0$ on $\left(x_{0}, b\right)$, then at point x_{0} there is a local maximum $f\left(x_{0}\right)$ of the function $\mathrm{f}(\mathrm{x})$ on (a, b).

If $\mathrm{f}^{\prime}(\mathrm{x})<0$ on ($\mathrm{a}, \mathrm{x}_{0}$) and $f^{\prime}(x)>0$ on $\left(x_{0}, b\right)$, then at point x_{0} there is a local minimum $\mathrm{f}\left(\mathrm{x}_{0}\right)$ of the function $f(x)$ on (a, b).

The second derivative test for extreme

Suppose that $f(x), f^{\prime}(x), f^{\prime \prime}(x)$ exist on (a, b) and $x_{0} \in(a, b)$. Let $f^{\prime}\left(x_{0}\right)=0$.
Then the following statements are true:
If $f^{\prime \prime}(x)>0$, then at point x_{0} there is a local minimum $f\left(x_{0}\right)$ of the function $f(x)$ on (a, b).

If $f^{\prime \prime}(x)<0$, then at point x_{0} there is a local maximum $f\left(x_{0}\right)$ of the function $f(x)$ on (a, b).

Determination of absolute maximum or absolute minimum of function $f(x)$ on $\langle a, b\rangle$:
Every function $f(x)$ continuous on $\langle a, b\rangle$ attains both its absolute maximum and absolute minimum there. Therefore, if we determine absolute maximum and absolute minimum of function $f(x)$, we proceed as follows:
a) Find critical points of $f(x)$.
b) Compute the values of $f(x)$ at all critical points and $f(a), f(b)$.
c) The largest value among them is absolute maximum, the least value among them is absolute minimum of the function $f(x)$ on $\langle a, b\rangle$.

2.5.3. Convexity and Concavity of a Function

We say, that a function $f(x)$ is convex at point x_{0}, if there exists an interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ such that the graph of the function $f(x)$ restricted to ($x_{0}-\delta, x_{0}+\delta$) lies above the tangent drawn at the point $\left[\left[x_{0}, f\left(x_{0}\right)\right]\right.$, Fig. 25a. If $f(x)$ is convex at every point of (a, b), we say that $f(x)$ is convex (or concave up or concave upward) on (a, b).

We say, that a function $f(x)$ is concave at point x_{0}, if there exists a interval $\left(x_{0}-\delta, x_{0}+\delta\right)$ such that the graph of the function $f(x)$ restricted to $\left(x_{0}-\delta, x_{0}+\delta\right)$ lies below the tangent drawn at the point $\left[x_{0}, f\left(x_{0}\right)\right]$, Fig. 25b. If $f(x)$ is concave at every point of (a, b), we say that $f(x)$ is concave (or concave down or concave downward) on (a, b).

We say, that a point $\left[x_{0}, f\left(x_{0}\right)\right]$ is a point of inflection (inflection point) of a function $f(x)$ if there exists some $\delta>0$ such that either the graph of $f(x)$ is convex on ($x_{0}-\delta, x_{0}$) and concave down on $\left(x_{0}, x_{0}+\delta\right)$, Fig. 25c, or the graph of $f(x)$ is concave down on $\left(x_{0}-\delta, x_{0}\right)$ and convex on $\left(x_{0}, x_{0}+\delta\right)$.

Fig. 25a

Fig. 25b

Fig. 25c

Proposition: Test of convexity and concavity and inflection point

Suppose that $f^{\prime \prime}(x)$ of the function $f(x)$ exists on (a, b):
If $f^{\prime \prime}(x)>0$ for $\forall x \in(a, b)$, then $f(x)$ is convex on (a, b),
if $f^{\prime \prime}(x)<0 \quad$ for $\forall x \in(a, b)$, then $f(x)$ is concave on (a, b),
if $f^{\prime \prime}\left(x_{0}\right)=0$ and $f^{\prime \prime \prime}\left(x_{0}\right) \neq 0 \quad$ then $\left[x_{0}, f\left(x_{0}\right)\right]$, is an inflection point of $f(x)$.
Example 2.5.1: Draw a graph of the function $y=\frac{x^{2}+1}{x}$.
Solution: a) $\quad x \neq 0$, than domain $D(f)=(-\infty, 0) \cup(0,+\infty)=R-\{0\}$.
b) $y(-x)=\frac{(-x)^{2}+1}{-x}=-\frac{x^{2}+1}{x}=-y$, therefore the function is odd (its graph is symmetrical about the origin).
c) $x^{2}+1 \neq 0$ for $\forall x \in R$, therefore there is no point of intersection with x-axis.
$0 \notin D(f)$, therefore there is no point of intersection with y-axis too.
d) $y^{\prime}=\frac{2 x \cdot x-\left(x^{2}+1\right) \cdot 1}{x^{2}}=\frac{x^{2}-1}{x^{2}}$,
critical point: $y^{\prime}=\frac{x^{2}-1}{x^{2}}=0, \quad x^{2}-1=0, \quad x_{1}=1, x_{2}=-1$.
The function is increasing for $y^{\prime}>0: \frac{x^{2}-1}{x^{2}}>0, x^{2}-1>0, \quad|x|>1$,
$x \in(-\infty,-1) \cup(1,+\infty)$,
The function is decreasing for $y^{\prime}<0: \frac{x^{2}-1}{x^{2}}<0, \quad x^{2}-1<0, \quad|x|<1, \quad x \in(-1,+1)-\{0\}$.
At point $x_{1}=1 \quad$ there is a local minimum: $y(1)=2$,
At point $x_{2}=-1$ there is a local maximum, $y(-1)=-2$.
e) $y^{\prime \prime}=\frac{2 x \cdot x^{2}-\left(x^{2}-1\right) \cdot 2 x}{x^{4}}=\frac{2 x}{x^{4}}=\frac{2}{x^{3}}$,
equation $y^{\prime \prime}=\frac{2}{x^{3}}=0$ has no solution, therefore a function has no inflection point.
The function is convex for $y^{\prime \prime}>0: \frac{2}{x^{3}}>0, \quad x^{3}>0, x>0, \quad x \in(0,+\infty)$,
The function is concave for $y^{\prime \prime}<0$: $\frac{2}{x^{3}}<0, \quad x^{3}<0, \quad x<0, \quad x \in(-\infty, 0)$.
f) The graph of the function $y=\frac{x^{2}+1}{x}$ is drawn on Fig. 26.

Fig. 26.

Literature:

[1] BUBENÍK, F.: Mathematics for Engineers. Vydavatelství ČVUT, Praha1997. ISBN 80-01-01574-2
[2] Demlová, M., HAMHALTER,J.: Calculus I. Vydavatelství ČVUT, Praha 1998, ISBN 80-01-01110-0
[3] HARSHBARGER, R.J.-REYNOLDS, J.J.: Calculus with Applications. D.C.Heath and Company, Lexington1990, ISBN 0-669-21145-1
[4] JAMES, G.: Modern Engineering Mathematics. Addison-Wesley, 1992. ISBN 0-201-1805456
[5] JAMES, G.: Advanced Modern Engineering Mathematics. Addison-Wesley, 1993. ISBN 0-201-56519-6

