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Mathematics | Linear Algebra

1. LINEAR ALGEBRA
1.1. Matrices

1.1.1. Definitions

m x n matrix with m rows and n columns is called an array of m.n real numbers

&1 o 0 Y
_la a ... a _
A=l T | = @)
aml am2 cee a.mn

Theentry a;; denotes the element in the ith row and jth column.

e If m =n then the array is square, and A is then called square matrix of order n.
e In a square matrix of order n, the diagonal containing elements a7, @y, -+, @y, is called
principal or leading diagonal.

e Diagonal matrix D is a square matrix that has its only non-zero elements along the leading
diagonal.

N1 0 0 1 0 - 0
0 - P 0 o1

A very important special case of diagonal matrix is the unit matrix or identity matrix E,
for which dy1 =ary =...=ann =1,

The zero or null matrix is the matrix with every element zero.

The transposed matrix AT of matrix A is just the matrix with rows and columns
interchanged.

81 dy - am
AT - a]:z 3.22 e amz
aln a2n see amn

If the matrix has one row or one column

V1
U= (ug,Up, -+, Up) Ory = 2= (V1’V2,"'1Vn)T
Vn

then it is called a row vector or a column vector.
1.1.2. Basic Properties of Matrices

Equality A=B
Two matrices A and B are said to be equal if and only if all their corresponding elements
are the same (aij = bij for Vi, j) and they are of the same order m x n.
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AdditionC=A+B
We can only add a m x n matrix to another m x n matrix, and an element of the sum is the
sum of the corresponding elements.

C:(Cij):(aij +bij) for Vi, j.

Multiplication by a scalar k
The matrix kA has elements kajj, i.e., we just multiply each element by the scalar k.

D:kA:(dij):(kaij) for Vi, j.

Matrix multiplication
If A'is m x p matrix with elements a;; and B a p x n matrix with elements b;; then we

define the product C = A.B as the m x n matrix with elements

p
C= (Cij ) = (ailblj +ai2b2j +...+aipbpj) = z aikbkj ,fori =12,---,m and j:1,2,---,n .
k=1
The ith row of A is multiplied term by term with the jth column of B to form the ijth
component of C. In order for multiplication to be possible, A must have p columns and B
must have p rows otherwise their product A.B is not defined.

Matrix multiplication is not commutative in general: A.B = B.A.

Properties of the transpose:
From the definition, the transpose of matrix is such that

(A+B) =AT+BT,  (AB)T=BTAT, (AT)T=A.

-1

: : 2 3 4 1 0 -3
Example 1.1.1: Given the matrices A=[ L 2 Oj and B=( 5 J

Find the matrices A+B, A-B, B-A, 3A, 4B, 3A+4B, AT +BT |

: 331 1 3 7 -1 -3 -7
Solution: A+B = , A-B= : B-A = ,
11 -3 3-1 3 -3 1
6 9 12 4 0-12 0
3A= : 4B = : 3A+4B = :
-3 6 0 8 -4 4 4
2 -1 1 2 31
AT=l3 2|,BT=| 0 -1|, AT+BT=|3 1]
4 0 -3 1 11
2 3
. i 3 31
Examplel.1.2: Given the matrices C = 11 and D=|1 0].
2 0

Find the matrices K=C.D and M =D.C.
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9 9 5
. 11 9
Solution: K=CD= (5 3}, M=D.C=|3 3 1],
6 6 2
kll =3.2+3.1+1.2 = 11, Myq = 2.3+3.1= 9, Mo = 2.3+3.1= 9,
k12: 3.3+3.0+1.0 =9, M3 = 2.1+3.1 =5, Myq = 1.3+0.1 = 3,
k21 =1.2+1.1+1.2 = 5, Moo = 1.3+0.1 = 3, Mo3 = 1.1+0.1 = 1,
k22: 1.3+1.0+1.0 = 3. Mm3q = 2.3+0.1 = 6, M3y = 2.3+0.1 = 6,

M33 = 2.1+0.1=2.
C.D#D.C.

1.2. Determinants
1.2.1. Definition and Basic Properties

The determinant of order n > 1 a square matrix

41 @2 - A
A= agl agz eee agn
anl an2 cee ann

is defined as a number det A = a;1Dy1 —ayoDyp +...+ (—1)””a1nD1n =

agz agn a?l 323 az.n n as a2,[1—l
=ayq.| ¢ 0 i |—aqp| : ot (D) :
any -+ A an a3 -t @y am ann.1
1 &2 - @
We writedet A= A= (321 822 - @2n
anl an2 ann

The commonly useful properties are as follows:
e Thus two rows (or columns) are the same, the determinant is zero.

¢ We multiply a determinant by a number c if we multiply by this number c all the elements
of a row or of a column.

e Interchanging two rows (or columns) changes the sign of the determinant.
e The addition rule:

a1 ap - an| |by b .. by| [Batbu @ +bp e @y +byy
agl 822 az.n + dp1 Ay ... A - agl 3.22 . agn
Ay a2 ... App 8n1 8p2 - A ant an2 Ann

Similarly for the columns.
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¢ Adding multiples of rows (or columns):

81 2 . P a7 @2 ... a1 tCay; aptCaxp ... utCay,
dp1 82 -+ @n| |21 A2 - G _| a1 a2 a2n
anl an2 ann anl an2 ann anl anz ann

1.2.2. Evaluation of Determinants

Forn=1,isdet A= &,

a1 ap

forn=2,isdet A=
dpy ax

=a118pp —a10ay1-

1 3
Example 1.2.1: Evaluate the determinant det B = ‘4 5‘ :

Solution: detB=15-34=5-12=-7

Sarrus’s rule for a determinant of the third order:

N1 Y2 W3
det A = dp1 dopp doz| = X7

az; 43y ag3

az; a
az; asp

dy; a3
a3; 4d33

dpp a3
dzp 4dasz3

+ d13-

= @1dppaz3 + dpap3azy +a3dp183) —agjappd 3 —azpap3d) —azzdp ) -

6 1 2
Example 1.2.2: Evaluate the determinant detC=|0 3 -
4 2

Solution: detC=6.3.1+0.22+4.1.(-1)-[2.3.4+ (-1).26+1.1.0] =
=18+0-4-(24-12+0)=14-12=2

In general for the determinant of order n > 1
the Laplace’s expansion according to the ith row holds:
n o : . :
det A=Y (-1 Vay Ay = (-1 e Ay + (D' PaipAg .t (D e Apy,
j=1
or the Laplace’s expansion according to the jth column holds:
n
_ . _ Lei 9y .
det A= Z(—l)'“aiinj = (—1) +Jale£|_j +(—1) +) aszzj -I-...-+-(—1)n—’_J anjAnj .

i=1

Note that
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. (—1)”j is called a sign of element a;; ,
e determinant A;; originating from det A omitting the ith row and jth column, is called

minor of order n-1 of det A belonging to the element aj »
e cofactor A; of the element aj is defined as the minor Aij multiplied by the appropriate

sign (1)t A:;:(—l)”j A -

2 0 4 2

. 3-2 3

Example 1.2.3: Evaluate the determinant det D = 0 4 5
-1 2 1 3

Solution: The second column contains only even numbers therefore we can put it in form of
product 2*det Ds.

We do the Laplace’s expansion according to the second column in the second step.
2 0 4 2 2 0 4 2

2 4 2
3-1 3 3-1 3
det D = 2. =2. =2 (-1)(-1)*?|6 11 = (Sarrus’s rule) =
0 2 5- 6 011
2 4 4
-1 113 2 0 4 4
=-2[88+48+8-(44+8+96)]=8(Sarrus’s rule)
or Laplace’s expansion according to the third row:
2 4 2 2 4 2 ) 4
detD=-2|6 11 =-2/6 11 =-2.2.(-1)*" 5 1Jst.
2 4 4 0 0 2

1.2.3. Matrix Inversion

The determinant of order k formed by the elements in the intersections of arbitrary k rows and

a11 412 - A
k columns of matrix A = | @21 222 ... azn
aml am2 cee amn

is called a minor of order k of the matrix A (1 <k < min (m, n)).

A matrix A is of rank h if and only if there exists a minor of A of order h different from
zero, any minor of A of order higher than h being equal to zero.

The square matrix A is called
e regular, ifdetA#0,
e singular, if det A=0.

The inverse of the square matrix A of order n is a square matrix AL of order n such that

-7-
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AAl=ATA=E,
where E is unit matrix.
The inverse matrix A™ of the square matrix A exist if and only if A is regular.

Thenholds A= ! adj A,
det A

Note that
e adjoint matrix adj A is defined as the transpose of matrix of cofactors A; , that is

T *

A1 A2 o A A1 A1 o An
adj A= Agl A.22 Agn — Aﬂ._g Agz Asz

* * * * *

A:l An2 Ahn Aln A2n Ann

2 2 3
Example 1.2.4: Find the inverse matrix AlofthematrixA=| 1 -1 0
-1 21
2 2 3
Solution: Determinant of matrix A:detA=|{ 1 -1 0/=-—2+6+0-3+0-2=-1,
-1 21

the matrix of cofactors A; :
(_1)1+1(_;- (::L)j (_1)1+2( ~ (])-j (_1)1+3 _::ll- _;j _1 _1 1
A* = (_1)24'1(5 \I’j (_1)24-2( ij (_1)2+3(_i gj [ g g —6},
-4
(_1)3+1(j 8] (132 (i 8) (L1)3>3 G _i]
4
5
6

1 -1 1) (4 3

the adjoint matrixadjA=| 4 5 -6| =|-1 31,

3 3 -4 1 -6 -4
L1 L1 4 3 (14 -3
Al_ adjA= —|-1 5 3|=| 1 -5 3|
det A 1l 1 6 4] (-1 6 4

2 2 3)Y(1 -4 -3) (10 0
Test AAY=| 1 -1 0].|] 1 -5 -3|=|0 1 0.
1 2 1/l-1 6 4)l0 0 1

1.2. Systems of Linear Equations
1.2.3. Definition

By a system of m linear equations in n unknowns we understand the system
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31X + Ao Xo + + anXn = by
S R
am1Xq + amoXo + ... + amnXn = (o

where
® Xi, X9, ..., X, are called unknowns,

e real numbers aj i=12,....,m j=1,2,..n)are called coefficients,
e real numbers b; are called right-hand side,
e if real numbers bj =0 (i =1, 2, ..., m) system of linear equations is called homogeneouse,

if exists by = 0, system of linear equations is called nonhomogeneouse.

&1 @2 v A
e matrix A=|%1 82 - @n | s called matrix of the system,
aml amz coa amn
X
: X9 | - .
e matrix X = | "2 | is called solution vector,
Xn
by
. by | . : .
e matrix B = | "2 | is called right-hand side vector,
bm
&1 8y - &y b
. dp1  QAyy -+ QAyp b ) .
e matrix A|B = . . . 2.| is called augmented matrix of the system.
ami @m2 - amn By

Then a system of equations can be rewritten in the matrix form A.X=B.

Theorem of Frobenius:

The system of m linear equations in n unknowns is solvable if and only if rank of
matrix of the system is equal to rank of the augmented matrix of the system:
h(A) = h(A|B) = h.

If h = n, then system has only one solution ,

If h < n, then system has n-h linearly independent solutions and every solution of this
system is a linear combination of this n-h solutions.

The homogeneouse system of m linear equations in n unknowns A.X = O
0

a) has always the trivial (zero) solution X = © |,
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b) has a non-trivial solution if and only if det A= 0.

1.3.2. Gaussian Elimination

Given system of n linear equations in n unknowns xq, Xp, ..., X, We solve in a serie of
steps:

1. The essence of the Gaussian elimination consists in transforming the system of m linear
equations in n unknowns into equivalent system (possesses the same solution) whose

&1 @y - an b
augmented matrix is upper triangular, i.e. the matrix O a§2 a%” b?
O 0 M amn bm

Elimination procedures rely on the manipulation of equations or, equivalently, the rows of the
augmented matrix of the system. There are various elementary row operations used which
do not alter the solution of the equations:

e multiply a row by a constant,
e interchange any two row,
e add or subtract one row from another.

2. We solve the last equation for x,.
3. We then solve the penultimate equation and eliminate x,_; intermsof x,.

3. We repeat the process in turn X,_», X5_3, ..., Xo until we arrive at a final equation for x,
which we can then solve.

X+ 2X2 + 5X3 = -9
Example 1.3.1: Solve the system of equations: % — X» + 3x3 = 2.
3X1 - 6X2 — X3 = 25

Solution: m=n=3

X1 X2 Xz | b | T |operation
1 2 519 |-1

1 -1 3 2 5 -1

3 6 -1 25|21 rs-3ry

1 2 519 |-1

0 -3 -2 11| 6

0 -12 -16| 52 | 24 r3-4r;

1 2 5119 |-1

0 -3 -2 11| 6

O 0 8|80

h(A) = h(A|B) =n =3,
equivalent upper triangular augmented matrix of the system:

-10 -
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@D % + 2% + 5x3 = -9
(2) - 3X2 - 2X3 = 11
3) - 8x3 = 8 =>wesolvexz=-1,

C11+2x3 . 11+2(-1)
3 3

and we solve finally (1): x =-9-2X, -5x3=-9+6+5=2

we solve then (2): X, = -3,

X + Xo + X3 = 3
Example 1.3.2: Solve the system of equations qo o+ X - g = -1
X + 2X2 — 3X3 = 1

2X1 + Xo - 2X3 = 1

Solution:m=4, n=3.

X1 X2 X3 | b > |operation
1 1 1 3 6

1 1 -3]-1 -2 ro-ry
1 2 -3 1 1 l3-Ip
2 1 -2 1 2 r4-2r1
1 1 1 3 6

0 0 -4 -4 -8 M>rI3
0 1 -4 | -2 -5

o -1 4| -5 -10

1 1 1 3 6

0 1 4 | -2 -5

0 -4 | -4 -8

0 -1 -4 -5 -10 [4+0o
1 1 1 3 6

0 1 4 | -2 -5

O 0 44| -8

0 O -8 | -7 | -15 r4-2r3
1 1 1 3 6

0 1 -4 | -2 -5

0 O -4 | -4 -8

0 O 0 1 1

h(A) =3, h(AIB)=4 = h(A)=h(A|B) = system has no solution

(last row: 0% +0Xxy +0x3 =1isnottrue.)
4 + Xo — 3X3 — X =0
Example 1.3.3: Solve the system of equations: 2% + 33X, + X3 — 5% = 0.
X — 2% — 2X3 + 2X4 = 0

Solution: homogeneous systém with m =3, n = 4.

-11 -
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X1 X2 Xs Xs4 | b | X |operation
1 -2 -2 2 |0 -1

2 3 1 S5 10| 1 r-2r,
4 1 -3 -1]0]| 1 rs-4ry
1 -2 -2 2 |0 -1

o 7 5 9|0/ 3 r2.9
0 9 5 9|05 rs-(-7)
1 -2 -2 2 |0 -1

0O 63 45 -81|0 ] 27 r2:9
0 -63 -35 63 [0 ]-35 r3+r,
1 -2 -2 2 |0 -1

o 7 5 9|0 3

0O 0O 10 -18|0]| -8

h(A)=h(A|B)=3,n=4 = n-h=4-3=1linearly independent solution X, =1p.

equivalent upper triangular augmented matrix of the system:

(1) X - 2X2 — 2X3 + 2X4 =0
(2) 7X2 + 5X3 — 9X4 =0
(3) 10x3 — 18x4 =10

3) 10x3-18p=0 = X3=9?p,

(2)  Tx+5x%3-9p=0 = x2=9p 5% _9p 'gp:O,

7 7
(1) X|— 2%y —2%3+2p=0 =
X| =—2P+2Xy +2X3=-2p +18—p+0 :8_p.
5 5
For example: p=0: % =0, Xo =0, x3=0, x4 =0 (trivial solution),

P=5:%=8 X,=0, x3=9, x4 =5,
P=-5:%=-8X=0,X3=-9,X4=-5

1.3.3. Cramer’s Rule

The system of n linear equations in n unknowns Xy, Xy, ..., X,

al 1% + 8.12 X9 + e + a]_n Xn = b_l_
az;X1 + Ao Xy + + aonXn = b,
an1Xq + anoXo + + annXn = b,

with a regular matrix of the system has a unique solution X, X, ..., X,,

_ det Di

,1=12,...,n,
detD

where Xi

-12 -
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here det D is the determinant of the matrix of the system and detD; is the determinant

obtaining by replacing the ith column of det D by the column of elements forming the right-
hand side of equations.

3 + Xo 4+ 2X3 = 5
Examplel.3.4: Solve the system of equations: XX — 55X + 2x3 = 7
Xy + 3X3 = -7
Solution: m=n=3.
3 12
detD=(1-52 =-76(=0).
0 73
5 12 3 52 3 15
detD;=| 7 -52 =-152, detD,=|1 72 =76, detD3=|1-5 7/=0,
-7 73 0-73 0 7-7
detD; -152 detD, 76 detDg 0
X|— =—=2, Xo = =——=-1, X3 = =——=
detD -76 detD -76 detD -76

-13 -
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2. DIFFERENTIAL CALCULUS FUNCTIONS OF ONE REAL VARIABLE

2.1. Functions of One Real Variable

2.1.1. Definitions and Basic Properties

A real-value function f relates each element x of a set D(f), with exactly one
element y of another set H(f). We express the relationship by the equation y = f(x) or
f: x—>vy.

D(f) is the domain of fand H(f) is the range of f or codomain.
Symbol x is an independent variable or argument of the function and the symbol y is the
dependent variable.

The graph of function is the set of ordered pairs [x, f (x)] for vx e D(f).

Bounded functions
We say that the function f is bounded above on a set Mc D( f) if there exists a number h

such that f(x)<h VxeM (Fig. 1a),
we say that the function f is bounded below on a set Mc D( f) if there exists a number d

such that f(x)>d VxeM (Fig. 1b),
the function f is bounded provided it is bounded both from below and from above, it is if

there exists a number k for which | f(x)|<k VxeM (Fig. 1c).
______ y ___Y=h [ 2 v

AN
[T\ /YA

Fig. 1a Fig. 1b Fig. 1c

Monotonic functions
We say that the function f is increasing on an interval | < D(f) provided that
for Vx;,xp el : X <Xp = f(x)< f(x0) (Fig. 2a),
we say that the function f is decreasing on an interval | — D(f) provided that
for Vx,xo el : X <Xp = f(x)> f(x) (Fig. 2b),
we say that the function f is nondecreasing on an interval | ¢ D(f) provided that
for Vx;,xo el : X <Xp = f(x) =< f(x0) (Fig. 2¢),

We say that the function f is nonincreasing on an interval | — D(f) provided that
for Vx;,xo el : X <Xp = f(x)=f(x0) (Fig. 2d).

-14 -
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y

PR I N
R i

Fig. 2a Fig. 2b Fig. 2c Fig. 2d

Periodic function
We say that the function f is periodic with period T on D(f) provided that
for Vxe D(f): f(x+T)=f(x) (Fig. 3).

One-to-one function
We say that the function f is one-to-one on aset M < D(f) provided that

for Vx;,xp e M : X = Xo = F(x) = f(x) (Fig. 4).
Yy y
‘ ; ' y=x-1
vﬂv X // X
y =sin 2x /
Fig. 3 Fig. 4

Composite function
Let two functions y = f (u) and u = g(x) be given such that the domain of f(u) intersects
with the range of g(x). Then the composite function y =h(x) is defined to be the
function h, for which domain D consists of all x e D(g) ) such that g(x) lie in D(f)
and h(x) = f(g(x)) for every x e D(h), (Fig. 5).

y
y=¢

'D, y=Xx
u=g(x) // y=Inx

1 D2 J(/—' X
y=fu) \ | y=fg()

'H
Fig. 5 Fig. 6

Inverse functions
Let be an one-to-one function f with domain D(f) and range H(f), i.e. for every
y e H(f) there exists x e D(f) xel for which y = f(x) . Then we define inverse

function of f with domain H(f) and range D(f) by x= f‘l(y) if and only if
f(x)=y.
Properties of inverse function:

-15 -
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e Graph of the function f L is the reflection of the graph of fin the line y = x (Fig. 6).

e Composition of inverse functions:

ff(y) =y for vyeH(f), f7L1(f (x) = x for Wx e D(f).
e For domain and range of the inverse functions is valid:
D(f)=H(f™), H(f)=D(f™).

Even and odd functions
We say that the function f is even on an interval (a,—a) < D(f) provided that
for Vxe(a,-a): f(—=x)=f(x).
Graph of the even functions is symmetrical about vertical axis (Fig. 7a).
We say that the function f is odd on an interval (a,—a) c D(f) provided that

for Vxe(a,-a): f(-x)=—-1(x).
Graph of the odd functions is symmetrical about the origin (Fig.7b).
y y
y=x
X
X y =X
Fig. 7a Fig. 7b

2.1.2. Elementary Functions

Polynomial functions

A polynomial function has the general form |f(x)=a,x" +an_1x”_1+...+a1x+a0,
where n is a positive integer and coefficients a;, 1 =0, 1, 2, ..., n, a, # 0 are real numbers.
The index n is called the degree of the polynomial. Domain D(f) =R =(-o0, +o).

n =0: constant function (polynomial of degree 0): |y =ap =k

Graph is a line parallel to x-axis, constant function is not one-to-one function (Fig. 8),
y y

y
/y:2x+3 \

— / y N

7 N

Fig. 8 Fig. 9a Fig. 9b

n=1: linear function (polynomial of degree 1): |y =g X+ag =kx+(¢
Graph is a line with slope k =tgar  which intersects y-axis at [0, q].

-16 -
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For k > 0 is linear function increasing (Fig. 9a), for k < 0 is decreasing (Fig. 9b),

linear function is one-to-one.

n = 2: quadratic function (polynomial of degree 2): |y = a2x2 +{X+ag = ax? +bx+c
Graph is a parabola, it is not one-to-one function (Fig. 10a, b).

For a >0 it is bounded below (Fig. 10a), for a <0 it is bounded above (Fig. 10b).
y y

\/y:x2—2x+2
X A\ X
/ \y:-2x2+3x+1

Fig. 10a Fig. 10b

Rational function

_Pn(®)
Qn (%)

where P, (x) and Q,(x) are polynomials of degree m a n.

Domain D(f)=R—-{xeR:Q(x)=0}.

A rational function has the general form |y

If m<nitissaid to be a proper rational function, if m > n it is improper rational function.

An improper rational function can always be expressed as a polynomial function plus
a proper rational function by algebraic division.

Exponential function

An exponential function has the general form |y = a*

where real constant a is called base, a> 0, a = 1.
Domain D(f)=R=(-0, +0), range H(f)=R, =(0, +).

Graph of the exponential function is called exponential curve (Fig. 11a, b, c).

y y y
x 1\ x
/y: 2 \ y:(j) / y=e
B X I ~— X _— X
Fig. 11a Fig. 11b Fig. 11c

It is bounded below and it is increasing for a > 1 (Fig. 11a) and it is decreasing for 0< a <1

(Fig. 11Db), it is one-to-one function and it intersects y-axis at [0, 1].

-17 -
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The standard exponential function is y =e*, (Fig. 11c), Euler’s number e = 2,71828... .
Let us recall some basic properties:

a"a*=a"", —=a""%, (@")®=a", a’=1.

Logarithmic functions

A logarithmic function has the general form |y =log, X|,

where real constant a is called base, a >0, a # 1.

It is defined as inverse function of exponential function y =a*, that is:
Domain D(f)=R, =(0, +x), range H(f)=R = (-0, +0).

Graph of the logarithmic function is called logarithmic curve (Fig. 12a, b, c).

y y y
y =log x y=Inx
7 X ~———— X ( X
y= Iogl%x
Fig. 12a Fig. 12b Fig. 12c

Fora > 1itisincreasing (Fig. 12a), for 0 < a < 1 it is decreasing (Fig. 12b),

it is one-to-one function and it intersects x-axis at [1, 0].

The inverse function of standard exponential functiony = y =e* is called the natural

logarithmic function and is written y =Inx (Fig. 12c).

Let us recall some basic properties:

foru>0,v>0isvalid: loguv=logau+log,v, logza=1 (al=a),
IogaE:Iogau—logav, log,1=0 (a° =1), log, u¥ =vlog,u.
v

Trigonometric (circular) functions
All trigonometric functions are periodic, hence trigonometric functions are not one-to-one.

Functions and have basic properties:

Domain D(f)=R =(-m, +x), range H(f)=<-1,1>, hence they are bounded (Fig. 13a, b).
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NN AT

y=sinx Y = COS X

Fig. 13a Fig. 13b
Functions are periodic with period T = 27
sin(x+2kz) =sinx, cos(x+2kz)=cosx, kis integer number.
Function y=sinx isodd function: sin(—x) = -sin x,
Function y=cosx iseven function: cos(—x)=cosX.

. sin X COS X . .
Functions |y =1tgx=——-7/and |y =cotg X =——-| have basic properties:
COS X sin X

Domain D(tgx) =R — {(2k+1)§}, D(cotg x) =R — {kz }, k is integer number,
range H(tg x) = H(cotg x) = R = (-0, +o0), hence they are not bounded (Fig. 14a, b).
Functions are periodic with period T = m:

tg(x + k) =tg X, cotg(x + kr) = cotg x, k is integer number.
Functions y=tgx and y =cotg x are odd functions:

tg (-x)=-tg x, cotg (—x) = —cotg X .
Function y = tg X is increasing on the intervals [(Zk —1)%, (2k +1)%j.

Function y = cotg x is decreasing on the intervals (kz, (k +1)z)

y y
X X
y=1gx y = cotg X
Fig. 14a Fig. 14b

Let us recall some basic properties:

sin? x + cos? x =1, tgx.cotgx =1,

sin 2x = 2 sin X cos X, cos 2x = cos® x - sin? x,

sin? x= 2(1 - cos 2x), cos? x = 3 (1 + cos 2x).
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Inverse trigonometric functions
None of the trigonometric functions are one-to-one since they are periodic. In order to define

inverses, it is customary to restrict the domains in which the trigonometric functions are one-

to-one as follows.

Function y =sinx is increasing on the interval < EiE] >, hence it is one-to-one on this

interval and it covers the range <-1,1>. So its inverse function exists and is denoted by

y=arcsinx |

We define y =arcsinx, xe<-1,1>, ifand only if, x=siny,ye < —%% >

Domain D(arcsinx) =<-1,1>, range H(arcsinx) = < —%% >,

Function y =arcsin x is increasing on its domain (Fig. 15a).

Function y =cosx is decreasing on the interval <0,z >, hence it is one-to-one on this
interval and covers the range <-1, 1>. So its inverse function exists and is denoted by

y =arccos X |.

We define arccos x y =arccos x, xe<—1,1>, ifand only if, x=cosy,ye<0,7 >.
Domain D(arccos x ) = <-1,1>, range H(arccos x) = <0,z >.
Function y=arccos x is decreasing on its domain (Fig. 15b).

)
Y
: . Y = arccos T
. y = arcsin x i y: a:
T fe
] /
7 I
-1 z x
¥ = sin :1’:',//‘" =17
Y= . o
—-37
Fig. 15a Fig. 15b
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Function y =tg x is increasing on the interval (—%%} hence it is one-to-one on this

interval and it covers the range (-oo, +0). So its inverse function exists and is denoted by

y = arctan x

We define y =arctan x, xe(-o0, +o0), if and only if, x=tgy, ye (—% %j

Domain D(arctan x) = (-o0, +0), range H(arctan x) = (—%%j

Function y =arctan x is increasing on its domain (Fig. 16a).

Function y =cotg x is decreasing on the interval (O, 7Z') , hence it is one-to-one on this

interval and covers the range (oo, +0). So its inverse function exists and is denoted by

y =arccot X

We define y =arccot x, Xe(-o, +0). if and only if, x=cotgy, ye (O, 7z) .
Domain D(arccot x) = (-0, +o0). range H(arccot x) = (0, 7).

Function y =arccot x is decreasing on its domain (Fig. 16b).

Fig. 16a Fig. 16b

2.2. Limits of Functions

2.2.1. Definition

Intuitive idea of limit: The notation lim f(x)=A
X—a

means that as x gets close to a (but does not equal a), f(x) gets close to A (Fig. 17).
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Definition of limit:

A function y= f(x) issaid to approach a limit A as x approaches the value a if, given
small quantity &, i tis possible to find a positive number 6 such that
|f(x)—Al<e forall x [x—a| <&, x=a, (Fig. 17).

T . y &
Notation: Xlinaf(x) A | y=A+
& |
NE— —y=1x)
Symbolic notation of limit: & ; ; }
lim f(x)=A < forVvVe>03 6> 0, that for \ ! e
o RIS
VxeD(f) isvalid: |x-a|<d = |f(x)-Al<e. | | |
3 ; d X
a- a at

Two facts regarding limits must be kept in mind: Fig. 17
a) The limit of a function as x approaches a is independent of the value of the function at a.

Even though lim f(x) exists, the value of the function at a may be undefined or may be the
X—a

same as the limit or may be defined but different from the limit (Fig. 18a, b, ¢)

y y ¥

y = fix) - jt — —e
fix f(@) =i

lim 700 L —

71 7T 71T

Fig. 18a Fig. 18b Fig. 18c

y = flx) fla) =
lim f(x)

X—=a

lim fix)

X—+a

b) The limit is said to exist only if the following condition is satisfied:

The limit as x approaches a from left, written lim f(x), equals the limit as x approaches a
X—a

from right, written lim f(x) : lim f(x) = lim f(x) .
x—a" x—a~ x—a’

Fig 19a, b show two cases where lim f(x) does not exist.
X—>a

-22 -



Mathematics |

Differential Calculus

\y :% -5 //f_:/i

X . — |
\ 7 124 8
Fig. 19a Fig.19b
2.2.2. Basic Rules
Suppose that lim f(x)=A, lim g(x) =B, than hold:
X—a X—>a
o There exists at most one AeR such that lim f(x)=A,
X—a
o lim kf(x)=k lim f(x)=KA, keR,
X—a X—a
n
o lim [f(x)]“={lim f(x)} =A", neN,
X—a X—a
. lim [f(x)£g(x)] = lim f(x)+ lim g(x)=A+B,
X—>a X—>a X—>a
. lim [ f(x).9(x)] = lim f(x). lim g(x)=AB,
X—>a X—a X—a
lim f(x)
. lim 1) _xoa " _ A B0,
x—a g(x) limg(x) B
X—>a
2.2.3. Limits of Selected Functions
. .1
e limc=c, ceR, e lim ==0,
X—a X—o0 X
e lim x"=a", acR, neN, e lim L:0, n>0,
Xx—a x—>+o0 N
e lim x"=+40, neN,
X—>+00
.1 .1
e lim —=-o, e lim ==+,
x—0" X x—0" X
e lim =0, o lim e =+,
X—>—00 X—>+00
e |lim Inx=-oo0, e |lim Inx=+o,
x—0" X—>+00
. X
o lim 2NX_q, e lim (1+1j —e,
x—0 X X—»00 X
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X
. a
o lim |1+=| =¢2.
X—>00 X

Example 2.2.1. Find the limits: a) A= lim L, B=Ilim 2X_4,c) C=Ilim L,
x—31-X x—2 X2 —4 x—>01— X3
2 X
&) D= fim —2X* o EZ Jim (XLG) .
X—>+00 3% — 2X + 2 X0\ X+2
Solution: a) = 3 = —E,
1-3 2
b)B= lim-—25"2 =gy 2 - 2 -1
x—>2 (X—=2)(x+2) x-»2x+2 2+2 2
1 (1 2
= <
) C= lim = lim X imx. - 0
w»wl_xs X%wl_x34£7 w»w(lJ3 0-1
3 —| -1
X X
! 6+(1)2
2 2 N
d)yD= lim #: lim %X—z lim X 22522,
x40 3x2 —2x+2 x>+03x%—2x+2 1 x4 1 (1)* 3
2 3-2=+2| =
X X X
X X X+2-2
¢) E= lim (XLG) = lim (“2*4} — lim (1+L] _
X—>+o0\ X+ 2 X—>+o\  X+2 X—>—+00 X+2

X+2 -2
= lim 1+i = lim l+i .1+i = e*1=¢*.
X—>+00 X+2 X—>+00 X+2 X+2

2.3. Continuity of Functions

A function y = f(x) is said to be continuous at a pointa if| lim f(x)= f(a)|
X—a

Note that the definition requires three conditions to be satisfied:

a) f(x) must be defined at the point a,
b) f(x) must have a limit at point a,
c) this limit must be equal to the value f(a).
We say that a function f(x) is continuous on open interval (a, b), if it is continuous at each

point of the interval (a, b).
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AA e —=.
/ N

Fig. 20a Fig. 20b

Consider the two functions (Fig. 20a, b). Function f(x) in Fig. 20a we can draw the whole
curve without lifting the pencil from the paper, but this is not possible for the function g(x)
in Fig. 20b. Hence the function f(x) is continuous everywhere, while the function g(x) is
continuous on intervals (—o, 0) and (0, +o0), and it has a discontinuity at x = 0.

Properties of continuous functions:

e Constant functions are continuous.

e Sums, differences, and products of continuous functions are continuous.

¢ Quotients and rational powers of continuous functions (where defined) are continuous.

e The composite function f(g(x))is continuous at a if g is continuous at a and f is
continuous at g(a).

2.4. The Derivative of Function

2.4.1. Definition

Let y= f(x) be a function and point xg eD(f). The derivative of the function f(x)
at the point xg is defined by limits

lim f(X)_f(XO) = lim f(XO+h)_f(XO) = lim Af(XO)

X=X X=Xg h—0 h Ax—0  AX
The derivative is denoted by symbols: f'(xg), ¥'(Xg), dféXO)1 dy;XO) .
X X

If derivative f'(xg) is a finite number , we say that function f (x) is differentiable at x;.

Let f(x) be a function differentiable at any point x from (a, b). Then we say that the function

is differentiable on interval (a, b).

The function f'(x) is called the derivative function of f(x).

The process is called differentiation.
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y

f(xo + )

f()

Fig. 21

Example 2.4.1: Find the derivative of the function y = f(x)=cat point X;.

Solution: f'(xg) = lim oA =T00) iy €=C_ iy O _ iy g
Ax—0 AX AX—0 AX  Ax—>0 AX  Ax—0

Example 2.4.2: Find the derivative of the function y = x at point X;.

Solution:

fr(xo) - ||m f(XO +AX)_ f(XO) — ||m (XO +AX)_(XO) — I|m & —
Ax—0 AX Ax—0 AX AXx—0 AX
= |lim 1=1.

AX—0
Geometric sense of derivative

The derivative f'(xg) is the slope k; of the tangent t to the graph of function y = f(x) at

point T[Xg, Vo] = T[X, F(Xo)]: k= ki = f'(xg) = lim w,(ﬁg. 21).
X—>Xg —Xp

The tangent t to the graph of function y = f(x) at point = T[Xg, f(Xp)] is described by
equation

y—Yo=ki(x=%p) or |y—Tf(xg)=F'(Xg)(x=Xo)}
The normal line n to the graph of function y= f(x) at point = T[xg, f(Xg)] has slope

Ky = ENNN. (while f'(xp)=0) and it is described by equation
k ')
-yg =k, (X-Xg) or - f(xg)=- 1 (X—Xg)
y yO —™n 0 y 0 f!(XO) 0/

2

Example 2.4.3: Find the equations of the tangent and normal line of the function y=x“ at

point T[3, ?].

Solution: yg = 32 =9, that is T[3, 9],
slope k; of the tangent t: y'=2x, k; =y'(3)=2.3=6,
the equation of the tangentt: y—9=6(x-3),

slope k, and the equation of the normal line n: k, = —%, y—9= —%(x—?,).
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Physical sense of derivative
The derivative f'(ty) is the instantaneous velocity v of physical point T[ty, f (tp)]

f(to+h)—f(tp)
: .

attime to V(tg) = f'(ty) = lim
h—0

2.4.2. Basic Rules for differentiation

Let f(x) and g(x) be functions differentiable at point x, let ceR be a constant. Then the
function c.f(x), f(x)xg(x), f(x).g(x)and E ; (g(x)= 0) are differentiable at point x.
The following hold: o
o ((FO)x9(x))' = f'(x)+9'(x),

o (f(x).9(X)) = f'(X).9(x)+ f(x).9'(x)and hence for g(x)=c: e (c.f(x))' =c.f'(x)

. (f(X)j f'(x). g(x)— f(x).g (X)
g(x) 92(x)

e the derivative of a composite function (the chain rule):

Let g(x) be a function differentiable at point x and f be a function differentiable at point

g(x), then the composite function f(g(x)) is differentiable at point x, and
(f(9(x)))" = 1'(9(x)).9'(x) .
e If a function f(x) is differentiable at point xg, then f(x) is continuous at point Xg.

e L"Hospital rule (for limits of fraction with infinite denominator)

Let foraeR be lim f(x)=0, lim g(x)=0, respectively

X—a X—a
F'(x)
lim f(x)==xoo, I|m g(x)=xo0,and lim
Xx—a x—a g'(X)

exists.

Then also exists lim ( ) and it holds | lim ( ) = lim &
x—a g(x) x—a g(x) x—a g9'(X)

2.4.3. Derivatives of Selected Functions

e(c) =c=0, for VxeR,

o (x") =nx"1t for VxeR, for VneR, hence o (x) =1
o (x3) =ax®! for Vxe(0,+ ), for VaeR,

o (eX) =¢* for VxeR,

e (@) =a"Ina VxeR, for VaeR,a>0,a=1,

-27-



Mathematics |

Differential Calculus

o1
)=

e (In|x

1
xlna

o (log,[x))'=

e (sinXx)"=cosx

e (cosx)' =-sinx

. 1
. (tgx) = —
COS“ X
e (cotgx) = — 12
sin© x
e (arcsinx)’' = L
1-x
, 1
e (arccosx)' =—
1-x°
e (arctan x)' = 5
1+x
e (arccotx)' =-— !
1+x

Example 2.4.4: Find the derivatives of the function at point xeD(f):
a) y= 2x% +3x% —4x+1

Solution: y' =2.4x* 1 +3.2x>1-4.1+0=8x>+6x—-4.

b) y:i3+5x2—§"/x73
X

Solution: y = 4x73 +5x2 — x4 :

y' =4.(=3)x 1 452x%71 =

c) y=xlInx

Solution: y' = (x)".Inx+ x.(Inx)" =1.In X+ x.1 =Inx+1.
X

d) y=e*cosx

for VxeR, x #0,

for VxeR, x#0, for VaeR,a>0,a#1,

for VxeR,
for VxeR,

for VxeR, x # (2k+1)%,

for VxeR, x # Kkr,

for vxe(-1,1),

for vxe(-1,1),

for VxeR,

for vVxeR.

2
x4 =—12x"% +10x —%x

Solution: y’" = (eX)".cos x+e*(cos x)’ = e* cos x +e* —sin x) = e*(cos x —sin x)

e) y= (x7 —3x2)sin X
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Solution: y' = (x7 —3x2) .sin x+(x7 —3x2).(sin X)' = (7x6 —6x).sin x+(x7 —3x2).cosx.

Q) y=X

2X

Lox—Inx2
Solution: y = y' = (Inx).2x—Inx.(2x) _ x X ~"*% _2-2Inx _2(1-Inx) _1-Inx
(2%)° 4x? 4x2 4x2 2x?
fly=tgx= ﬂ
Cos X
Solution: y' = (sinx)'.cosx —sin x.(cos x)’ _ cosx.cosx—sinx.(-sinx) _ 1 |
(cos x)° (cos x)? (cos )2

f) y:ei’>x+5

Solution: y =eY, u=3x+5: y'=(e")u =e".3=e3*23=3e3*

g) y=sin3x

Solution: y =sinu, u=3x: y'=(sinu)'.u’=cosu.3=cos3x.3=3cos3x.

h) y=sin X3

Solution: y=sinu, u= X3 y'=(sinu)'.u’= cosu.3x? = cos x°.3x? = 3x2.cos X°.
i) y:sin3x=(sin x)3

Solution: y:u3, u=sinx: y’:(u3)'.u’=3u2.cosx:3sin2 X.COS X .

) y= (2x5 —2x—1)4
Solution: y= u, u=2x°-2x-1: y'= (u4)'.u' = 4u3.(10x4 -2)=
= 4(2x° - 2x-1)3(10x* - 2) =8(2x° - 2x - 1)3(5x* -1).
) y= 3arcsin(4x2 +1)
1
1-u?

Solution: 'y =3arcsinu, u=4x>+1;: y'=(3arcsinu)'.u’'=3 .(8x) =

_3 1 8x — 24X

J-@@+? - @xd+1?

2.4.4. Differential of the Function

Let f(x) be a function differentiable at point xy. The differential of the function f (x)
at point X is called the linear function

dyg =dy(xg) =df (Xg) = f'(Xg).dx = y'(Xp).dx, where dx=Xx—-Xg.

The differential dy(x) is used to describe a small change in the dependent variable y, and
dx is a small change in the independent variable x.
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2.4.5. Highes-Order Derivative

The derivative y'= f'(x) of the function f(x) is a function itself. We can compute the
derivative (y")'=(f'(x))" of the function f’'(x)f(x), which is called second derivative of the
function f(x) and it is denoted by

d?y d?f
yI!, f ”(X), _, -
dx? dx?
3 3
Analogously (yﬂ)r — (f H(X))r — ym — .I: M(X) — d_%/ — %
dx dx

is called third derivative of the function f(x), etc.

Generally the n-th derivative of the function f (x) is defined by

' ' n n
(n—l) = f (n_l) X and denoted by (n)’ f (n) X), m’ u .
(Y 2) (") y SN

Example 2.4.5: Find all derivatives of the function y = 5x% +3x—-8.
Solution: y'= 20x° +3,, y' = 60x?, y" =120x,
y® =120, y®=y® = =o

Example 2.4.6: Find first and second derivative of the function y = xsin x at point x5 =0.
Solution: y"=1.sin X+ X.COS X, y'(0)=1.sin0+0.cos0=1.0+0.1=0,
y"(0) =2c0s0-0.sin0=2.1-0.0=2.

2.4.6. Parametric Differentiation

We say that a function is defined parametrically by y = f (x), where
x=x(t) and y=y(t), te<a, b>is parameter.

dy
For a derivative of this function is hold: |y = f'(x) = dy —dt _ 1 .
dx  dx  x
dt

Example 2.4.7: Find a derivative of the function x =a(t-sint), y=a(l-cost),a>0,teR.

asint  sint
a(l—cost) (1—cost)

Solution: x=a(l-cost), y=asint and then y'=

2.5. Applications of the Derivatives
2.6.1. Basic Theorems

The Mean Value Theorem
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Let y= f(x) be a function differentiable on (a,b) and continuous on <a,b >. Then there is

f(b)-

at least one point c € (a,b) such that f'(c)= o (@) , Fig. 22.
—-a

Fig. 22 Fig. 23
Rolle’s Theorem

Let y=1f(x) be a function differentiable on (a,b) and continuous on <a,b>. If
f(a) = f(b), then there exists at least one point ¢ € (a,b) such that f'(c) =0, Fig. 23.

Cauchy’s Theorem

Let functions f(x) and g(x) be continuous on <a,b >, function f(x) be differentiable on
interval (a, b), function g(x) has a finite derivative g'(x) =0 on (a,b). Then there exists
fb)-f(a) _ f'(c)
g(b)-g(@) g'(c)

a point ce(a, b) such that

2.5.6. Monotonic Functions and Optimal Value

From the Mean Value Theorem there is valid: Suppose that two functions f (x) and g(x)
are differentiable on (a,b) and continuous and bounded on <a,b>. Then the following
statements are true:

If f'(x)>0 for vxe(a,b), then f(x) is increasing on (a,b),

it f'(x)<0 for vxe(a,b), then f(x) is decreasing on (a,b),

if f'(x)>0 for vx e (a,b), then f(x) is nondecreasing on (a,b),

if f'(x)<0 for vx e (a,b), then f(x) is nonincreasing on (a,b),

if f'(x)=0 for vxe(a,b), then f(x) is constanton (a,b).
Definition:

1. A function f(x) with domain D(f) is said to have an absolute maximum (respectively
absolute minimum) at point xg € D(f) if f(x)< f(xy) , (respectively if f(x)= f(xp)
for ¥xe D(f). The number f(xy)) is called the absolute maximum (respectively absolute
minimum) of f(x) on D(f).

2. The function f(x) is said to have a local or relative maximum (respectively local or
relative minimum) at point xg € D(f) if there is some open interval (a,b) < D(f)
containing xg and f(xg) is the absolute maximum (respectively absolute minimum) of
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f(x) on (a,b). The number f(xy) is called a local or relative maximum (respectively
local or relative minimum) of f(x) on (a,b).

3 An absolute maximum or absolute minimum of f(x) is called an absolute extreme of f(x).

A local maximum or local minimum of f(x) is called a local extreme of f (x), Fig 24a,b).

y y

y=f() \

X
X X
X ’ JINy James 476
Fig. 24a Fig. 24b

y=1(x)

Proposition:
1. If a function f(x) has a local extreme at point xg , then
either f'(x)=0, or f’(x) does not exist.

(When searching for local extremes of a function f(x), in view of this result , it suffices to
test only those points x;,, for which f'(xy) =0 or f'(xy) does not exist. These points are
called critical or stationary point.)

2. The first derivative test for extreme

Let y= f(x) be a function continuous on (a,b) and critical point xj € (a,b).
If f'(x)> 0 on (a,xg) and f'(x)< 0 on (Xg,b), then at point xy there is a local
maximum f (Xp) of the function f(x) on (a,b).

If f'(x)< 0 on (a, Xg) and f'(x)> 0 on (Xp,b), then at point x, there is a local
minimum f(xp) of the function f(x) on (a,b).

The second derivative test for extreme
Suppose that f(x), f'(x), f"(x) existon (a,b) and x5 € (a,b). Let f'(xy)=0.
Then the following statements are true:
If f"(x)>0, then at point xq there is a local minimum f (xy) of the function f(x)
on (a,b).
If £"(x)<0, then at point xg there is a local maximum f (xy) of the function f(x)
on (a,b).

Determination of absolute maximum or absolute minimum of function f(x)on <a,b>:

Every function f(x) continuous on <a,b> attains both its absolute maximum and
absolute minimum there. Therefore, if we determine absolute maximum and absolute
minimum of function f (x), we proceed as follows:

a) Find critical points of f(x).
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b) Compute the values of f(x) at all critical points and f(a), f(b).

c) The largest value among them is absolute maximum, the least value among them is

absolute minimum of the function f(x) on <a,b>.

2.5.3. Convexity and Concavity of a Function

We say, that a function f(x) is convex at point X, if there exists an interval
(Xg — 9, Xp +9) such that the graph of the function f(x) restricted to (xg—3, X +9) lies
above the tangent drawn at the point [[Xo, f (Xg)], Fig. 25a. If f(x) is convex at every point
of (a,b), we say that f(x) is convex (or concave up or concave upward) on (a,b).

We say, that a function f(x) is concave at point Xy, if there exists a interval
(Xg — 9, Xp +9) such that the graph of the function f(x) restricted to (xy—3, X +9) lies
below the tangent drawn at the point [xo, f(xo)], Fig. 25b. If f(x) is concave at every point
of (a,b), we say that f(x) is concave (or concave down or concave downward) on (a,b).

We say, that a point [xo, f(xo)] is a point of inflection (inflection point) of a function
f(x) if there exists some 6> 0 such that either the graph of f(x) is convex on (xg—0, Xg)
and concave down on (Xg, Xg+9), Fig. 25c, or the graph of f(x) is concave down on
(Xp — 9, Xp) and convex on (Xg, Xg +9) .

y
y = f(x)
f0e)| —
t
A X
| y ~7
Xo
Fig. 25a Fig. 25b Fig. 25¢

Proposition: Test of convexity and concavity and inflection point
Suppose that f"(x) of the function f(x) exists on (a, b):

If f"(x)>0 for vxe(a,b), then f(x) is convex on (a,b),

if f"(x)<0 for vxe(a,b), then f(x) is concave on (a,b),

if f"(xp)=0and f"(xg)= 0 then [Xg, f (Xg)]. is an inflection point of f(x).
X% +1

Example 2.5.1: Draw a graph of the function y=

X
Solution: a) x =0, than domain D(f) = (-0, 0)U(0, +x) =R - {0}.
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(—x)2 +1_ x2 +1
—X X

b) y(—x) = =-y, therefore the function is odd (its graph is
symmetrical about the origin).

C) x2 +10 for VxeR, therefore there is no point of intersection with x-axis.

0¢ D(f), therefore there is no point of intersection with y-axis too.

. 2x.X—(x? +1).1 B x% -1

d) y :
x? G
- . X2—- 2
critical point: y' = —=0, x*-1=0, x=1x=-1.
X
L . x2 -1 2
The function is increasing for y’'> 0: 3 >0, x>-1>0, |x|>1,
X
X € (—o,-1) U (1, +x),
2 _
The function is decreasing for y'<O0: X > <0, x°-1<0, Ix|<1, x e (-1,+1)-{0}.
X

Atpoint x; =1  thereis alocal minimum: y(1) = 2,
At point x, =—1 there is a local maximum , y(-1) = -2.

&) y' = X2 -(2-n2x 2x 2
x4 x4 X3

i 2 . . . . .
equation y" = —= = 0 has no solution, therefore a function has no inflection point.
X

The function is convex for y” > 0: % >0, x°>0, x>0, xe (0,+0),

X
The function is concave for y” < 0: % <0, x°<0, x<0, xe (=20, 0).
X
. x2+1 . :
) The graph of the function y= is drawn on Fig. 26.
X
Yy
2
\4)( + 1
, =
1| X
T X
. 1
/\
Fig. 26.
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