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1. INDEFINITE INTEGRALS 

We will turn our attention to reversing the operation of differentiation. Given the derivate 

of a function, we can find the function. This process is called antidifferentiation.  

1.1. The Indefinite Integral 

The derivative of function f(x) = 5x4 at any value x is )(xf  320x . We put a question 

now. If F’(x) = 5x4 , what is  F(x) ? We know the function could be )(xF  = x5 because 

F’(x)=(x5)´= 5x4 = f(x). But the function could also be )(xF  = x5 + C , because F’(x) =  

(x5 + C)´= 5x4. Thus we say the antiderivative of f(x) = 5x4 is )(xF  = x5 + C, where C is an 

arbitrary constant. 

The process of finding an antiderivative is called integration. The function that results 

when integration takes place is called an indefinite integral or more simply an integral. We 

can denote the indefinite integral (that is, the antiderivative) of function f(x) by  ( )f x dx . 

Thus we can write 45x dx   to indicate the antiderivative of the function f(x) = 5x4. The 

expression is read as “the integral of 5x4 with respect to x “. In this case, 5x4 is called the 

integrand, the integral sign  indicates the process of integration, and the dx indicates that 

the integral is to be taken with respect to x. We can write  4 55x dx x C  .  

Definition: A function F(x) is an antiderivative of a function f(x) if F’(x) = f(x) for all x in 

the domain of f. The set of all antiderivatives of f is the indefinite integral of f with respect to 

x, denoted by ( ) ( )f x dx F x C  .  

The symbol   is an integral sign. The function f is the integrand of the integral, and x is 

the variable of integration. 

1.2. Computation of Integrals  

Now that we know what are integrals. The next problem is to find out how to do them. 

For differentiation we had a tidy set of rules that allowed us to work out the derivative of just 

about any function that we cared to write down. The procedure is basically mechanical and 

can be done quite well by computers. There is nothing like this for integration. Integration is 

more of a skill than a routine.  
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If you can spot a function which differentiates to give your function then you have found 

an integral. Look at the following simple examples.  

Example:  What is the antiderivative of f(x) for ( , )x   : 

a) f(x) = 0,   

 )(xF  = C,    because ( ) 0F x C     f(x). 

b) f(x) = 1,   

  )(xF  = x+C,   because ( ) ( ) 1 0F x x C        f(x). 

c) f(x) = x,   

  )(xF  = 
2

2

x
C ,  because 

2
( ) ( ) 0 ( )

2

x
F x C x x f x       . 

d) ( )  sinf x x ,   

  )(xF = cos x C  ,  because ( ) ( cos ) ( sin ) 0 sin ( )F x x C x x f x          . 

Table 1: Integration of some common functions 

[1.]   Cdx0  

[2.]   Cxdx1  

[3.]  





C
n

x
dxx

n
n

1

1

 where 1   ,0  nx  

[4.]   Cxdx
x

ln
1

 where 0x  

[5.]   Cxxdx cossin  

[6.]   Cxxdx sincos  

[7.]   Cxdx
x

tg
cos

1
2

 where Zk   ,
2

)12( 


kx  

[8.]   Cxdx
x

 cotg 
sin

1
2

 where Zk   ,  kx  

[9.]  


Cxdx
x

arcsin
1

1
2

 where )1,1(x  

[10.]  


Cxdx
x

arctg
1

1
2

 

[11.] C
a

a
dxa

x
x  ln

 where 1   ,0  aa  

[12.]   Cedxe xx  
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This is a short table of some standard integrals. You can add in a constant of integration if 

you want to. 

1.3. Some Properties of the Indefinite Integral  

These are immediate consequences of the corresponding properties of derivatives. In each 

equation there is really an arbitrary constant of integration hanging around.  

Let f (x) and g(x) be functions and  k  a constant. Then  

      dxxgdxxfdxxgxf )()()()( ,   

      dxxgdxxfdxxgxf )()()()( ,  

   dxxfkdxxkf )()( ,           kR 

These rules may allow us to reduce an integral to the point where we can spot the answer.  

Example:     

dxe
x

x x 





  67

sin

2
cos

2
 =    dxdxedx

x
xdx x 67

sin

1
2cos

2
 = 

 =  sin 2 cot g 7 6xx x e x C     = sin 2cotg 7 6xx x e x C    . 

1.4. Substitution 

Many integrals are hard to perform at first hand. A smart idea consists in “cleaning”' them 

through an algebraic substitution which transforms the given integrals into easier ones.  

Theorem: Let f be a continuous function defined on a interval ( , )a b  and let  
: ( , ) ( , )a b c d   be a differentiable function. Then the following statement hold 

 ( ) ( ) ( )f x dx f t t dt    . 

Remark: To express integration by substitution, we use the notation ( )x t , then 

( )dx t dt   and   ( ) ( ) ( )f x dx f t t dt    . 

Example:  Find 
2

2
1 x

dx
x


  . 

Solution: It is easy to see that sine-substitution is the one to use. Set ( ) sinx t t  . The 

function   is continuous on 0,
2

 
 
 

. Indeed, we have  ( )  cos   dx t dt t dt  and 
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therefore 
2 2 2

2 2 2 2
1 1 sin cos 1

cos 1 cotg
sin sin sin

x t t
dx tdt dt dt t t C

x t t t

  
        

 
     

This will not answer fully the problem because the answer should be given as a function of x. 
Since  arcsint x   we get after easy simplifications  

2 2 2

2
1 1 sin 1

cotg arcsin
sin

x t x
dx t t C t C x C

t xx

  
             . 

Example:  Find 2 55( 7)x x dx  . 

Solution: It is clear that once we develop the 2 55( 7)x  through the binomial formula, we will 
get a polynomial function easy to integrate. But it is clear that this will take a lot of time with 
big possibility of doing mistakes ! 

Let us consider the substitution 2 7t x   (the reason behind is the presence of x in the 

integral since the derivative of 2( 7)x   is 2x). Indeed, we have  2   dt x dx and therefore  

2 55 55 561
( 7)

2 112

dt
x x dx t t C      

Indefinite integral 2 55( 7)x x dx  is a function of x not of t. Therefore, we have to go back 

and replace t by t(x):  

2 55 56 2 561 1
( 7) ( 7)

112 112
x x dx t C x C       

Example:  Let us evaluate kxe dx  . 

Solution: If you substitute   kxt  , then    dt
k

dxkdxdxkxdt
1

,   and we obtain: 

1 1 1 1t t t kxe dt e dt e C e C
k k k k

       
   . 

Similarly we can extend Table 1. 

Table 1 (additional): Integration of some functions 

[13.] kxe dx =
1 kxe C
k

  

[14.] sin kxdx =
1

cos kx C
k

   

[15.] cos kxdx =
1

sin kx C
k

  

[16.] 
( )

( )

f x dx

f x


 = ln ( )f x C  
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1.4. Integration by Parts 

One of very common mistake students usually do is ( ) ( ) ( ) ( )f x g x dx f x dx g x dx    

To convince yourself that it is a wrong formula, take f(x) = x and g(x)=1. Therefore, one 

may wonder what to do in this case. A partial answer is given by what is called Integration 

by Parts.  

In order to understand this technique, recall the formula 

( ( ) ( )) ( ) ( ) ( ) ( )u x v x u x v x u x v x     

which implies  

( ) ( ) ( ) ( ) ( ) ( )u x v x u x v x dx u x v x dx     

Theorem: Let u(x) and v(x) have continuous derivatives on (a,b).  

Then              . . .u x v x dx u x v x u x v x dx     

Remark:  We usually use the notation     dxvuvuvdxu ...    alternatively 

    . . .u v dx u v u vdx     .  

Therefore if one of the two integrals    .u x v x dx  and    .u x v x dx is easy to 

evaluate, we can use it to get the other one. This is the main idea behind integration by parts. 

Example:  Evaluate 2 xx e dx  . 

Solution: Since the derivative or the integral of xe  lead to the same function, it will not 
matter whether we do one operation or the other. Therefore, we concentrate on the other 

function 2x . Clearly, if we integrate we will increase the power. This suggests that we 

should differentiate 2x  and integrate xe . Hence  
2,xu e v x    ,  after integration and differentiation, we get  

2, ( ) 2x xu u dx e dx e v x x        .  The integration by parts formula gives 

2 2. . 2 .x x xx e dx e x x e dx    

It is clear that the new integral 2 . xx e dx  is not easily obtainable. Due to its similarity with 

the initial integral, we will use integration by parts for a second time. The same discussion 
as before leads to  

, 2xu e v x    , after integration and differentiation, we get  
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, (2 ) 2x xu u dx e dx e v x         .  The integration by parts formula gives 

2 2 2 2. . 2 . . .2 2. 2 . 2x x x x x x x x xx e dx e x x e dx e x e x e dx x e x e e C            

From this example, try to remember that most of the time the integration by parts will not 

be enough to give you the answer after one shot. You may need to do some extra work: 

another integration by parts or use other techniques. 

Example:  Evaluate   xdxln  . 

Solution: This is an indefinite integral involving one function. The second needed function is 
g(x) = 1. Since the derivative of this function is 0, the only choice left is to differentiate 
the other function  ( ) lnf x x  : 

,ln,1 xvu     after integration and differentiation, we get 

  
x

xvxdxu
1

ln,1  . The integration by parts formula gives 

 xdxln  =  1
.ln . .ln 1 ln ln 1x x x dx x x dx x x x C x x C

x
          . 

Remark:  Since the derivative of ln x  is 1/x, it is very common that whenever an integral 

involves a function which is a product of ln x  with another function, to differentiate ln x  and 

integrate the other function. 

Example:  Evaluate  I = 3 cos 2xe x dx . 

Solution: The two functions involved in this example do not exhibit any special behavior 
when it comes to differentiating or integrating. Therefore, we choose one function to be 
differentiated and the other one to be integrated. We have  

3 , cos 2xu e v x    ,  which implies 

3 1
, (cos 2 ) 2sin 2

3
x xu u dx e dx e v x x          .  The integration by parts formula 

gives 

I = 3 .cos 2xe x dx = 3 31 1
.cos 2 .2sin 2

3 3
x xe x e x dx  = 3 31 2

.cos 2 .sin 2 .
3 3

x xe x e x dx   

The new integral 3 .sin 2xe x dx  is similar in nature to the initial one. One of the common 

mistake is to do another integration by parts in which we integrate sin 2x  and differentiate 
3xe . This will simply take you back to your original integral with nothing done. In fact, 

what you would have done is simply the reverse path of the integration by parts (Do the 
calculations to convince yourself). Therefore we continue doing another integration by 
parts as  

3 , sin 2xu e v x    ,  which implies 

3 1
, (sin 2 ) 2cos 2

3
x xu u dx e dx e v x x         .  The integration by parts formula 
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3 .sin 2xe x dx = 3 31 1
.sin 2 .2cos 2

3 3
x xe x e x dx  = 3 31 2

.sin 2 .cos 2 .
3 3

x xe x e x dx   

Combining both formulas we get  

I = 3 .cos 2xe x dx = 3 3 31 2 1 2
.cos 2 .sin 2 .cos 2

3 3 3 3
x x xe x e x e x dx   

   . 

Easy calculations give  

I = 3 .cos 2xe x dx = 3 31 2 4
.cos 2 .sin 2 I

3 9 9
x xe x e x   . 

After two integration by parts, we get an integral identical to the initial one. You may 

wonder why and simply because the derivative and integration of xe are the same while 
you need two derivatives of the cosine function to generate the same function. Finally easy 
algebraic manipulation gives  

I = 3 .cos 2xe x dx = 3 33 2
.cos 2 .sin 2

13 13
x xe x e x C   

2. DEFINITE INTEGRALS 

Integration is vital to many scientific areas. Many powerful mathematical tools are based 

on integration. Differential equations for instance are the direct consequence of the 

development of integration.  

So what is integration? Integration stems from two different problems. The more 

immediate problem is to find the inverse transform of the derivative. This concept is known as 

finding the antiderivative. The other problem deals with areas and how to find them. The 

bridge between these two different problems is the Fundamental Theorem of Calculus.  

2.1. The Definite Integral  

Definition: Suppose that F(x) is an indefinite integral of f (x), i.e. F'(x) = f (x).  

The Definite Integral  ( )  
b

a

f x dx  where a and b are numbers, is defined to be the number 

      )()()()( aFbFxFdxxf
b

a

b

a

 . 

a and b are called the Limits of Integration, a is called the Lower Limit and b is called 

the Upper Limit.  

Remark:  The choice of indefinite integral (choice of constant of integration) does not matter-
-the constant of integration cancels out.  

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

bb

a a

f x dx F x C F b C F a C F b C F a C F b F a           
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Example:  Evaluate    
4

2

212 dxx  . 

Solution: 

44 3 3 3
2 2 2 2

2 2

4 2 302
(4 4 1) 4 2 (4 2.4 4) (4 2.2 2)

3 3 3 3

x
x x dx x x

 
            

  
  . 

 

2.2. The Area Problem and the Definite Integral  

Consider the interval <a, b>. Let f (x) be a continuous function defined on this interval. 

Let us think once more of the problem of finding the area under the graph of f (x) between 

x = a and x = b.  

Figure 2.1: Dividing up the area under a curve
We will adopt an approach that is much more elementary (and much older) than our 

previous method. Divide the interval <a, b> up into a large number of small parts. For 

convenience we will take them all to be of the same width, but that is not very important. 

Now use this subdivision to break up the area into thin strips as shown.  

Denote the subdivision points by x0, x1, ..., xn where xk = a + 

k x  and x  is the width of each strip x  = (b - a)/n.  

We can get an approximation to the area under the graph by 

adding up the areas of the n rectangles shown in the picture. The 

rectangle on the base <xk, xk + 1> has area f(xk) x . So  

approximate area = 
1

0

( )
n

k
k

f x x



  

Figure 2.2: One of the rectangles 
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Now we use the same kind of argument that we used when inventing the derivative. As n 

gets bigger and bigger we expect the sum of the areas of the rectangles to get closer and closer 

to the true area under the graph. We would hope that if we took the limit as n   the sum 

would tend to the true area as its limiting value. We will assume that this is true. So  

A = area under graph = 
1

0

lim ( )
n

k
n k

f x x


 
   

If there exists a number A such that  
1

0

lim ( )
n

k
n k

A f x x


 
  , then f is integrable on  

<a, b> and A is the definite integral of f over <a, b>. This is denoted  ( )  
b

a

f x dx . 

This interpretation of the definite integral is the one that is most useful in applications, as 

we will soon see. 

2.3. Rules for Definite Integrals 

1. Order of Integration:   ( )   ( )  
b a

a b

f x dx f x dx       (F(b) - F(a) = - (F(a) - F(b))) 

2. Zero:   ( ) 0 
a

a

f x dx   

3. Constant Multiple:    ( )   ( )  
b b

a a

kf x dx k f x dx   

4. Sum and Difference:  (  ( ) ( ))   ( )  g ( )  
b b b

a a a

f x g x dx f x dx x dx      

5. Additivity:   ( )  +  ( )   ( )  
b c c

a b a

f x dx f x dx f x dx    

6. Domination:  ( )  ( ) f x g x on ,a b   ⇒ ( )  g ( )  
b b

a a

f x dx x dx   
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2.4. Integration by Parts in Definite Integrals 

Theorem: Let u(x) and v(x) have continuous derivatives on <a,b>.  

Then              . . .
b b

b
a

a a

u x v x dx u x v x u x v x dx       . 

Remark:  We usually use the notation   . . .
b b

b
a

a a

u vdx u v u v dx       alternatively 

     . . .
b b

b
a

a a

u v dx u v u vdx    .  

Example:  Evaluate 
0

( 2)sinx xdx


  . 

Solution: We choose  
sin , 2u x v x     ,  after integration and differentiation, we get  

sin cos , ( 2) 1u u dx xdx x v x           .  The integration by parts formula gives 

0

( 2)sinx xdx


  =       0 0
0

2 cos 1. cos 2 cos sinx x x dx x x x


 
               

 =   4220sin0cos)02(sincos2   . 

2.5. Substitution in Definite Integrals 

In a definite integral  ( )  
b

a

f x dx  it is always understood that x is independent variable 

and we are integrating between the limits x a  and x b . Thus when we change to a new 

independent variable t, we must also change limits of integration. 

Theorem: Suppose f is continuous function and has antiderivative on a interval ,a b   and 
let function  ( )x t  has a continuous derivative on ,    and   maps ,    

into ,a b   ( ( ) a    and ( ) b   ). Then   ( ) ( ( )) ( )
b

a

f x dx f t t dt



     . 

In this case, you will never have to go back to the initial variable x.  

Example:  Evaluate  
2

0

4 sin.cos



xdxx  . 
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Solution: Put cos x t , so -sin    xdx dt , sin    -xdx dt . As x goes from 0 to 
2


 the value 

of t goes from  = cos 0 =1 to  = 
2

cos


 = 0. So the integral transforms into : 


2

0

4 sin.cos



xdxx  =    









0

1

1

0

1

0

5
44

5

1
0

5

1

5

t
dttdtt . 

2.6. Applications of Integration 

Finding Areas under Curves 

We want to find the area of the region bounded above by 

the graph of a positive function f (x), bounded below by the x-

axis, bounded to the left by the vertical line x = a, and to the 

right by the vertical line x = b  (see Figure 2.3). 

 

Figure 2.3. 

If f is continuous function on <a, b> , then the area is given by 

A = Area (shadet) = ( )  
b

a

f x dx  

Remark: I drew the picture conveniently with the graph above the axis. If f (x) goes negative 

then the “area” calculated by the integral also goes negative.  

Example:  Find the area bounded by the curve y = x2 – 4x and x-axes. 

Solution: The area to integrate must be an enclosed area.  This time the upper bound is the x-

axis, the lower bound is the curve (see Figure 2.4). 

We first find a and b by finding the x-coordinates of points of 

intersection of the function and x-axis. We solve equation 

2 4 0x x  for x. 

( 4) 0x x    so  0x  , 4x  . 

 

The functional values over the interval <0, 2> are negative. Thus the value of the definite 

integral over this interval will be negative too. The area is given by 

y

x

y = x - 4x
2

0 4

Figure 2.4. 

x

y

y = f(x)

ba
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 A =  
44 4 3

2 2 2

0 0 0

64 32
4 4 2 2.16

3 3 3

x
x xdx x x dx x

                
   

  . 

Area Between Two Curves 

We have used the definite integral to find the area of the region between a curve and the 

x-axis over an interval where the curve lies above the x-axis. We can easily extend this 

technique to finding the area between two curves over 

an interval where one curve lies above the other (see 

Figure 2.5). 

Suppose that the graphs of both ( )y f x  and 

( )y g x  lie above the x-axis, and that the graph of 

( )y f x  lies above ( )y g x  throughout the interval 

from x a  to x b ; that is  ( ) ( )f x g x  on <a, b>.  

 

 

Then ( )
b

a

f x dx  gives the area between the graph of ( )y f x  and the x-axis (see Figure 

2.6 (a)), and ( )
b

a

g x dx  gives the area between the graph of ( )y g x  and the x-axis (see Figure 

2.6 (b)). As Figure 6.9 (c) shows, the area of the region between the graphs of ( )y f x  and 

( )y g x  is the difference of these two areas. That is 

A = Area between the curves =  ( )  g ( )   ( ) ( )   
b b b

a a a

f x dx x dx f x g x dx      . 

 
 
 
 

Figure 2.5. 

Figure 2.6. 
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Example:  Find the area of the region bounded by 2y x  and 2 3y x  . 

Solution: The graph of the region is shown in Figure 2.7. We first find a and b by finding  

x-coordinates of the points of intersection of the graphs. Setting the y-values equal gives 

x2 =2x + 3, 
x2 - 2x - 3 = 0, 
(x – 3)(x + 1) = 0, 
x = 3, x = -1,  
thus a =-1 and  b = 3 . 
 

Figure 2.7 
 

The area of enclosed region is: 

A =    
3

32

3

1
31999

3
332

3

1

3

1

3
22 






 













x
xxdxxx . 

Volumes of Revolution  

Take the graph of y = f (x) on the interval <a, b> and spin it round the x-axis so as to 

produce what is known as a solid of revolution as shown in Figure 2.8. We want to get a 

formula for the volume of this solid.  

The method is almost exactly the same as 

in the previous examples. Think of the 

interval <a, b> being subdivided into lots of 

little bits. Now look at one of the bits and try 

to get an approximation for the volume of the 

“thin slice” of the solid obtained by rotating 

the piece of the graph on this interval.  

Figure 2.8. 

In the notation of the diagram, the thin slice of the solid is virtually a 

cylinder of radius y and thickness x  Figure 2.9. The volume of a 

cylinder is the product of its height and the area of its base. So we get the 

approximation 2V y x       for the volume of the slice.  

The approximation to the total volume can then be written as  

Figure 2.9. 

y

x

y = x
2

y = 2x + 3

-1 3

3
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2V y x   . 

Now take the limit as  n   and get 

V=Volume =  22 ( )
b b

a a

y dx f x dx    . 

Example:  Find the volume V of solid generated when the graph of function 2y x  

revolves around the x-axis on the interval <0, 1>. 

Solution: In Figure 2.10 we see that 0a  , 1b  . The volume of the 

solid is  

V =  
55

1

0

1

0

1

0

5
422  








 

x
dxxdxx . 

Figure 2.10. 

The Length of a Curve  

Suppose we want to calculate the length of the graph of ( )y f x  between x a  and 

x b . Subdivide <a, b> as before into n small parts. Look at the graph on one of these parts. 

The idea is to get an approximation to the length of the graph on this part, in the same way 

that we used the rectangle approximation when finding the area. Then we add up the 

approximations and take the limit as n   so as to produce an integral which gives the true 

length. 

The obvious approach is to use the length of the chord PQ as 

an approximation to the length of the graph between P and Q. In 

the notation of Figure 2.11 this length is  

2 2s x y     which we can write more conveniently as  

2

1
y

s x
x

 


    
 

 . 

Figure 2.11. 

We now have the approximation to the length which I will write crudely as  

y

x

y = -x

2y = x

0 1

2
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2

1
y

L x
x

 


    
 

  . 

Our new interpretation of the definite integral tells us that, as n   this tends to the 

value of the definite integral  

L = Length 
2

1
b

a

dy
dx

dx
    
   . 

Remark:  The  
y

x




 tends to 
dy

dx
 in the limit. 

Note: If the curve is given parametrically by x = x(t) and y = y(t) then a very similar argument 
gives us the formula  

L = Length    2 2( ) ( )x t y t dt



      

for the length of the curve between t   and t  . 

Example:  Find the length L of the asteroid

2 2 2
3 3 3x y a  , where 0a  . 

Solution: Let us employ the parametric expression  

3cosx a t , 3siny a t , where 0,2t   .  

We calculate   23 cos sinx a t t  , 23 sin cosy a t t . 

 

Figure 2.12. 

In this case      2 2 2 4 2 2 4 2 2 2 2( ) ( ) 9 cos sin 9 sin cos 9 cos sinx t y t a t t a t t a t t      

By the symmetry (see Figure 2.11), we have   

2 2 2
22 2 2

00 0 0

cos 2
4 9 cos sin 12 cos sin 6 sin 2 6 6

2

t
L a t tdt a t tdt a tdt a a

  


            . 

Area of Surface of Revolution  

I'm going to be brief here and just give you the formula.  



MATHEMATICS  II  2. Definite Integrals 

 - 18 - 

Suppose we take the graph y = f (x) on the range <a, b> and rotate it around the x-axis as 

before. Then the Surface Area of the surface formed by this is given by  

S = Surface Area 
2

2 1
b

a

dy
y dx

dx
     

   . 

 
Example:  Find the surface area of the sphere. 

Solution: We obtain our sphere by rotating the semicircle. Take the semicircle 

2 2y R x  on <- R, R> and spin it round the x-axis. We get a sphere of radius R. 

For this curve 
2 2

dy x

dx R x

   
  

. 

So    
2 2

2 2 2 2
1 1

dy x R

dx R x R x

     
   

 . 

 
So the area is given by  

S=Surface of a sphere  2 2 2

2 2
2 2 2 4

R R
R

R
R R

R
R x dx Rdx R x R

R x
   
 

    


  . 

So a sphere of radius R has area 24 R . 

3. DIFFERENTIAL EQUATIONS 

3.1. Introduction  

A differential equation is an equation for an unknown function, say y(x), which involves 

derivatives of the function.  

For example:         2
dy

x
dx

 ,    2 cosy y y x    ,   
4
3

2

y y
x y

y

    . 

The order of a differential equation is the order of the highest derivative occurring in it. 

In the above examples the orders are 1,2 and 3.  

Remark: Technically, these are known as Ordinary Differential Equations (ODE) because the 

unknown function is a function of one variable. Differential equations involving functions of 

several variables and their partial derivatives are called Partial Differential Equations 

(PDE).
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Many laws in science and engineering are statements about the relationship between a 

quantity and the way in which it changes. The change is often measured by a derivative and 

therefore the mathematical expression of these laws tends to be in terms of differential 

equations.  

Given a differential equation the obvious reaction is to try to solve it for the unknown 

function. As with integrals, and for much the same reason, this is easier said than done. 

Consider the differential equation y''(x) = 2x, where the dash denotes differentiation with 

respect to x. Integrating both sides of this equation with respect to x we get  

22y xdx x C     , 

where C is an arbitrary constant of integration. This is one place where it is crucially 

important to include the constant of integration! Now integrate once more and get  

3
2( )

3

x
y x C dx Cx D      , 

where D is a further constant of integration.  

We now have the General Solution of the differential equation with arbitrary constants C 

and D. Note that this is really an infinite class of solutions. If we give C and D particular 

values then we get a Particular Solution. For example, 
3

3

x
y x   and 

3
2 5

3

x
y x    are 

particular solutions of the equation.  

The values of the arbitrary constants that we almost invariably acquire when solving a 

differential equation are usually determined by giving conditions that the solution is required 

to satisfy. The most common kind of conditions are Initial Conditions, where the values of y 

and some of its derivatives are given for a specific value of x.  

Example:  Find the solution to y''(x) = 2x then satisfies (0) 1y   and (0) 0y  . 

Solution: We know that the general solution is   
3

3

x
y Cx D    . 

The condition (0) 1y   says that 1 = 0 + 0 + D, so D = 1. The condition (0) 0y   says 

that 0 = 0 + C, so C = 0. So the required solution is  
3

1
3

x
y    . 
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Note: An equation of order n generally requires n integrations to get the general solution, so 

the general solution can be expected to contain n unknown constants and you would expect to 

have to give n conditions to fix these constants.  

3.2. Separable Equations  

It is frequently necessary to change the form of a differential equation before it can be 

solved with the techniques of the previous section. For example, the equation  

2y y   cannot be solved by simply integrating both sides of the equation with respect to 

x. We cannot evaluate 2y dx   unless we can write y as a function of x, but y = f(x) is the 

solution we seek.  

Because 
dy

y
dx

  , we can multiply both sides of 2dy
y

dx
  by 

2
dx

y
 to obtain an equation 

that has all terms containing y on one side of the equation and all terms containing x on the 

other side. That is, we obtain  

2
dy

dx
y

 . 

A differential equation is said to be separable if it can be manipulated into the form  

( )   ( )f y dy g x dx  . 

The solution of a separable differential equation is obtained by integrating both sides of 

the equation after the variable have been separated 

( )   ( )f y dy g x dx C     

It may not be possible to express y simply in terms of x.  

Example:  Solve the differential equation   2 2 3( )x y x y x  . 

Solution: To write the equation in separable form, we first factor 2x  from the left side and 

express 
dy

y
dx

  . 

2 3( 1)x y dy x dx   

3

2
( 1)

x
y dy dx

x
   
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The equation is now separated, so we integrate both sides. 

( 1)y dy xdx    

2 2

2 2

y x
y C    

This equation, as well as the equation 

2 2
12y y x C      gives the solution implicitly. 

3.3. Linear Differential Equations 

Some very important applications are modeled by a special class of differential equations, 

called Linear Differential Equations. 

We will solve linear differential equations in which the highest derivative is the first 

derivative; these are called First-Order Linear Differential Equations. 

A first-order linear differential equation is an equation of the form 

( ) ( )y p x y q x   , 

where p and q are functions of x. 

Example:  Differential equation   xy
y e

x
    is called a first-order, linear, 

nonhomogeneous differential equation. First-order – no derivative higher than the 

first derivative y , linear – no powers in y higher than 1, nonhomogeneous – ( )q x  

is not zero. 

To see how to solve nonhomogeneous differential equation for y(x), let's first consider the 

simpler equation when ( ) 0q x  , which is called a Homogeneous Equation: 

Homogeneous Linear Differential Equation 

A differential equation that can be written in the form   

( ) 0y p x y    

is called a first-order homogeneous linear differential equation. 

It is understood that x varies over some interval in the real line, and p(x) is a continuous 

function of x in the interval. The equation is called linear because y and y' occur only linearly 

and homogeneous because the right side of the equation is zero.  
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The first order homogeneous linear differential equation has separable variables, because 

it can be written as    

( )
dy

p x y
dx

  . 

This forms allows us to separate all the y-terms on the left and the x-terms on the right: 

( )
dy

p x dx
y
  ,  

which gives: ln ( )y p x dx c   , 

where c is the constant of integration. 

Now solve for y ( )p x dx cy e  , 

 ( )( ) p x dxy x Ce , 

where  cC e   if  y > 0, and cC e   if  y < 0 . 

Example:  a) Find the general solution of the equation 3 0xy y    for x > 0.  

 b) Find the particular solution with the initial value (1) 2y  . 

Solution:  a) We first put the equation into the homogeneous linear form by dividing by x: 

 
3

0
y

y
x

    , 

 
3

dy dx

y x
 

 , 

 
3

1
ln 3ln lny x c c

x
     . 

The constant of integration c is absorbed into the constant C, and the general solution is  

 
3

( )
C

y x
x

  . 

b)  The particular solution with initial value (1) 2y   is 

 2
1

C
 ,   2C  ,   

 
3

2
( )y x

x
 . 
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Nonhomogeneous Linear Differential Equation 

First-order nonhomogeneous linear differential equations are those in which, after 

isolating the linear terms containing ( )y x  and ( )y x  on the left side of the equation, the right 

side is not identically zero. In these cases the right hand side of the equation is usually 

represented as one function ( )q x , and the standard form looks like 

( ) ( )y p x y q x    . 

Remark: When the right hand side is actually a constant  k, it is still valid to think of it as a 

function; it's merely the constant function ( )q x k for all x.  

Method for Solving Linear Differential Equation 

A general solution of a linear equation can be found by the method called Variation of 

Constants:  

1. Start with a solution ( )y x  of the corresponding homogeneous equation 

( ) 0y p x y    , 

( )( ) ( )p x dxy x Ce Cu x   ,  

where ( )( ) p x dxu x e  . 

2. We begin by assuming that the particular solution has the form ( ) ( ) ( )y x C x u x , where 
( )C x  is an unknown function (we replaced constant C by a function ( )C x ). We substitute 

this into the differential equation 

( ) ( )
d

y p x y q x
dx

  , 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )C x u x C x u x p x C x u x q x    , 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )C x u x C x u x p x u x q x     . 

Since ( )u x is a solution of homogeneous equation, 

( ) ( ) ( ) 0u x p x u x   . 

We obtain 
( )

( )
( )

q x
C x

u x
  , 

 
( )

( )
( )

q x
C x dx K

u x
  , 

where K is again the constant of integration. 
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Thus, the final expression for ( )y x  is: 
( )

( ) ( ) ( ) ( ) ( )
( )

q x
y x C x u x Ku x u x dx

u x
     . 

Note that the general solution ( ) ( ) ( )y x y x Y x   is the sum of an arbitrary constant times 

a homogeneous solution, ( ) ( )y x Ku x , that satisfies ( ) 0y p x y    and a particular 

solution, 
( )

( ) ( )
( )

q x
Y x u x dx

u x
  , that satisfies ( ) ( )Y p x Y q x   . 

Example:  a) Find the general solution of the equation 33xy y x    for x > 0.  

 b) Find the particular solution with the initial value (1) 2y  . 

Solution:  a) We first put the equation into the homogeneous linear form by dividing by x: 

 23y
y x

x
    . 

The solution ( )y x  of the corresponding homogeneous equation 

 
3

0
y

y
x

    

is (see page 22) 

 
3

( )
C

y x
x

 . 

We assume that the general solution has the form 
3

( )
( )

C x
y x

x
  where ( )C x  is an 

unknown function. We substitute this into the differential equation 

 
3 2 3 2

6

( )
3

( ) 3 ( )
C x

C x x x C x x x
xx

 
   , 

 2
3 4 4
( ) 3 ( ) 3 ( )C x C x C x

x
x x x


    , 

 5( )C x x   , 

 
6

5( )
6

x
C x x dx K    . 

The general solution is 

 

6
3

3 3 3
( ) 6( )

6

x
KC x x K

y x
x x x


     
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b)  The particular solution with initial value (1) 2y   is 

 
3

3
1

2
6 1

K
  ,   

11

6
K   .  

Required particular solution is 

 
3

3
3 3

11
1 116( ) ( )

6 6

x
y x x

x x
     . 

3.4. Linear Differential Equations nth order 

Many systems can be represented in mathematical form using Linear Differential 

Equations. This subject is the main focus of most introductory courses in differential 

equations. In addition, linear differential equations with constant coefficients can be solved 

using relatively simple analytical approaches, and the characteristic solutions that are obtained 

are simple elementary functions (sinusoids, exponentials, etc.) and they give significant 

insight into the physical behaviour of the systems under study. In the previous chapter we 

looked at first order differential equations.  In this chapter we will move on to nth order 

differential equations. 

A linear differential equation is any differential equation that can be wrote in the 

following form. 

 ( ) ( 1)
1 1 0( ) ... ( ) ( ) ( )n n

ny p x y p x y p x y f x
       , 

where the ( )ip x  coefficients and right hand side forcing function, ( )f x , are continuous 

functions. For example, the standard form for a second order system is 

 ( ) ( ) ( )y p x y q x y f x     

Remark: The important thing to note about linear differential equations is that there are no 

products of the function, ( )y x , and it’s derivatives and neither the function or it’s derivatives 

occur to any power other than the first power. 

Initial Conditions is set of conditions on the solution of the form 

 ( 1)
0 0 0 1 0 1( ) ,  ( ) ,  ... , ( )n

ny x b y x b y x b
    . 

The number of initial conditions that are required for a given differential equation will 

depend upon the order of the differential equation as we will see. 
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When f(x) = 0, the equation is called homogeneous, otherwise it is called 

nonhomogeneous. To a nonhomogeneous equation we associate the so called associated 

homogeneous equation: 

( ) ( 1)
1 1 0( ) ... ( ) ( ) 0n n

ny p x y p x y p x y
       . 

The general solution to a problem of this type (i.e. linear ODE) can be written as the sum 

of a homogeneous solution and a particular solution, 

( ) ( ) ( )y x y x Y x  , 

where ( )y x  is the general solution, ( )y x  is the homogeneous solution containing n 

arbitrary constants, and ( )Y x  is the particular solution containing no arbitrary constants. 

3.5. Homogeneous Equations with Constant Coefficients 

When ( )i ip x a  constant, the equation is Equations with Constant Coefficients. 

A general constant coefficient homogeneous linear ODE can be written as 

( ) ( 1)
1 1 0... 0n n

ny a y a y a y
       . 

One usually assumes a solution of the form ( ) xy x e  (for constant ). Substitution of 

this expression into the original equation gives 

1
1 1 0... 0n x n x x x

ne a e a e a e     
      . 

Dividing by xe gives the characteristic equation 

1
1 1 0... 0n n

na a a  
      

and the roots of the characteristic polynomial represent values of   that satisfy the 

assumed form for ( )y x . For an nth order system, there will be n roots (not necessarily distinct) 

to the nth order characteristic equation. 

The general solution becomes a linear combination of the individual solutions to the 

homogeneous equation with the restriction that the n solutions must be linearly independent. 

For n distinct roots, the homogeneous solution can be written as 

1 1

( ) ( ) i
n n

x
i i i

i i

y x C y x C e

 
    . 
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The n linearly independent solutions form the basis of solutions on the interval of 

interest. 

3.6. Homogeneous 2nd Order Equations with Constant Coefficients 

A 2nd order constant coefficient homogeneous system can be written as 

1 0 0y a y a y     . 

The corresponding characteristic equation is 

2
1 0 0a a     

and the roots of this quadratic equation are given by 

2
1 1 0

1,2
4

2

a a a


  
  . 

With known (distinct) roots, the general solution can be written as 

1 2
1 2( ) x xy x C e C e    . 

The actual form of the solution is strongly dependent on whether the roots are real versus 

complex or distinct versus repeated. In fact three special cases can be identified based on 

whether the term inside the radical is positive, negative, or zero. These three cases are 

identified in detail in the remainder of this subsection. 

I. Real Distinct Roots: 

If 2
1 04 0D a a   , the roots 1 2,     are real and distinct. Therefore the general solution 

is usually written as above 

1 2
1 2( ) x xy x C e C e    . 

II. Repeated Roots: 

If 2
1 04 0D a a   , one obtains repeated roots. For this situation, the double root is 

given by  1
1,2 2

a 
  . 

Therefore, there is only one independent solution, 
1

2
1( )

a
x

y x e


 . The second 

independent solution is  
1

2
2( )

a
x

y x xe


   and the general solution is 
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1

2
1 2( ) ( )

a
x

y x C C x e


   . 

III. Complex Conjugate Roots: 

If 2
1 04 0D a a   , the roots are complex conjugates. In this case the roots can be 

written as  1,2 i     with  1

2

a 
   and 

1

2
D   . The  independent solutions are  

1( ) cosxy x e x   and 2( ) sinxy x e x  . Therefore the general solution is 

1 2( ) ( cos sin )xy x e C x C x     . 

Example:  Solve the differential equation   11 24 0y y y    ,  (0) 0y  ,  (0) 7y   . 

Solution: The characteristic equation is    2 11 24 0     , 

 ( 8)( 3) 0     . 

Its roots are 1 8    and 2 3    and so the general solution is 

 8 3
1 2( ) x xy x C e C e    

and its derivative is 8 3
1 2( ) 8 3x xy x C e C e      . 

Now, plug in the initial conditions to get the following system of equations: 

 1 2(0) 0y C C    

 1 2(0) 7 8 3y C C       . 

Solving this system gives 1
7

5
C   and 2

7

5
C   .  The actual solution to the differential 

equation is then 8 37 7
( )

5 5
x xy x e e    . 

Example:  Solve the differential equation   2 0y y y     . 

Solution: The characteristic equation is    3 22 0      , 

 2 2( 2 1) ( 1) 0          . 

Its roots are 1 0   and the double root 2,3 1    and so the general solution is 

 1 2 2( ) x xy x C C e C xe     . 
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Example:  Solve the differential equation   4 8 5 0y y y    ,  (0) 0y  ,  (0) 2y  . 

Solution: The characteristic equation is    24 8 5 0     

 1,2
8 64 80

8

i


  
  

Its roots are 1,2 1
2

i    and so the general solution is 

1 2 1 2( ) cos sin cos sin
2 2 2 2

x x xx x x x
y x C e C e e C C

     
 

      and its derivative is 

1 2 1 2
1

( ) cos sin sin cos
2 2 2 2 2

x xx x x x
y x e C C e C C

           
   

 . 

Now, plug in the initial conditions to get the following system of equations: 

 1 2(0) 0 0y C C    , 

 1 2
1

(0) 2
2

y C C     . 

Solving this system gives 1 0C   and 2 4C  .  The actual solution to the differential 

equation is then ( ) 4 sin
2

x x
y x e . 

3.6. Nonhomogeneous Equations with Constant Coefficients 

The nth order, linear nonhomogeneous differential equation is 

( ) ( 1)
1 1 0... ( )n n

ny a y a y a y f x
      , 

where f(x) is a non-zero function. 

We need to know a set of fundamental solutions  1 2, ,..., ny y y of the associated 

homogeneous equation ( ) ( 1)
1 1 0... 0n n

ny a y a y a y
      . 

We know that, in this case, the general solution of the associated homogeneous equation 

is  1 1 2 2( ) ( ) ( ) ... ( )n ny x C y x C y x C y x     . 

The general solution to a linear nonhomogeneous differential equation can be written as 

the sum of a homogeneous solution and a particular solution, 

 ( ) ( ) ( )y x y x Y x   . 
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Method of Variation of Parameters  

A more general method for finding particular solutions is the variation of parameter 

technique. The method can be summarized as follows: 

Given the nth order, linear nonhomogeneous differential equation with homogeneous 

solution 

1 1 2 2( ) ( ) ( ) ... ( )n ny x C y x C y x C y x    . 

One can write the particular solution as 

1 1 2 2( ) ( ) ( ) ( ) ( ) ... ( ) ( )n nY x C x y x C x y x C x y x    ,   

where 1 2( ),  ( ) ... ( )nC x C x C x  are unknown functions. 

Second Order, Linear Nonhomogeneous Differential Equation  

We will take a look at the method that can be used to find a particular solution to an 

equation 

 1 0 ( )y a y a y f x    . 

The general solution to the associated homogeneous differential equation is  

 1 1 2 2( ) ( ) ( )y x C y x C y x  ,  where 

1( )y x  and 2( )y x  are a fundamental set of solutions. 

What we’re going to do is see if we can find a pair of functions, 1( )C x  and 2( )C x  so that  

 1 1 2 2( ) ( ) ( ) ( ) ( )Y x C x y x C x y x    

will be a particular solution to nonhomogeneous differential equation. We have two 

unknowns here and so we’ll need two equations eventually. One equation is easy. Our 

proposed solution must satisfy the differential equation. The second equation can come from a 

variety of places.  We are going to get our second equation simply by making an assumption 

that will make our work easier. 

So, let’s start. If we’re going to plug our proposed solution into the differential equation. 

We’re going to need some derivatives so let’s get those.  The first derivative is 

 1 1 1 1 2 2 2 2( )Y x C y C y C y C y        . 

Here’s the assumption. Simply to make the first derivative easier to deal with we are 

going to assume that 
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 1 1 2 2 0C y C y    . 

Now, there is no reason ahead of time to believe that this can be done. However, we will 

see that this will work out.  We simply make this assumption on the hope that it won’t cause 

problems down the road and to make the first derivative easier so don’t get excited about it. 

With this assumption the first derivative becomes 

 1 1 2 2( )Y x C y C y     . 

The second derivative is then 

 1 1 1 1 2 2 2 2( )Y x C y C y C y C y          . 

Plug the solution and it’s derivatives into the nonhomogeneous differential equation. 

Rearranging a little gives 

 1 1 2 2 ( )C y C y f x     . 

The two equations that we want so solve for the unknown functions are  

 1 1 2 2

1 1 2 2

0

( )

C y C y

C y C y f x

  

    
 

Solving this system is actually quite simple 

 2
1

1 2 1 2

( )
( )

y f x
C x

y y y y

 
 

 and 

 1
2

1 2 1 2

( )
( )

y f x
C x

y y y y
 

 
 . 

Next, let’s notice that 
1 2

1 2 1 2 1 2
1 2

( , )
y y

W y y y y y y
y y

   
 

 is the Wronskian of 1y  

and 2y . Finally, all that we need to do is integrate 1 ( )C x  and 2 ( )C x  in order to determine 

what 1( )C x  and 2( )C x  are. Doing this gives 

 2
1

1 2 1 2

( )
( )

y f x
C x dx

y y y y




 
   and 

 1
2

1 2 1 2

( )
( )

y f x
C x dx

y y y y


 
  . 
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A particular solution to the differential equation is 

2 1
1 1 2 2 1 2

1 2 1 2 1 2 1 2

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

y f x y f x
Y x C x y x C x y x y x dx y x dx

y y y y y y y y


   

    
   . 

Example:  Solve the differential equation   
3

1

cos
y y

x
    . 

Solution: A set of fundamental solutions of the equation 0y y     is  

 1 2cos , siny x y x  . We seek a particular solution of the form 

1 2( ) ( ) cos ( )sinY x C x x C x x   . 

We substitute the expression for ( )Y x and its derivatives into the inhomogeneous 

equation. We have a system of linear equations for 1 ( )C x and 2 ( )C x  

1 2

1 2 3

cos sin 0

1
sin cos

cos

C x C x

C x C x
x

  

  
 .   Here is the Wronskian 

cos sin
( ) 1

sin cos

x x
W x

x x
 


 . 

We solve this system using Kramer's rule and get 

1 3
sin

( )
cos

x
C x

x
      and   2 2

1
( )

cos
C x

x
   . 

Using techniques of integration, we get 

1 2
1

( )
2cos

C x
x

     and   2 ( ) tgC x x  .   The particular solution is 

2

2
1 1 sin

( ) cos tg sin
2cos cos2cos

x
Y x x x x

x xx
       . 

The general solution of the inhomogeneous equation is 

2

1 2
1 sin

( ) ( ) ( ) cos sin
2cos cos

x
y x y x Y x C x C x

x x
       . 

Method of Undetermined Coefficients 

For some simple differential equations, (primarily constant coefficient equations), and 

some simple inhomogeneities we are able to guess the form of a particular solution ( )Y x . 

This form will contain some unknown parameters. We substitute this form into the differential 

equation to determine the parameters and thus determine a particular solution. 

Consider an nth order inhomogeneous equation with constant coefficients 
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 ( ) ( 1)
1 1 0... ( )n n

ny a y a y a y f x
       . 

We can guess the form of a particular solution, if ( )f x  is one of a few simple forms 

( ) ( ) cos( )x
nf x P x e x    or  ( ) ( ) sin( )x

nf x P x e x  , where ( )nP x  is a polynomial 

function with degree n.  

Then a particular solution ( )Y x  is given by 

 ( ) ( ) cos( ) ( ) sin( )k x x
n nY x x Q x e x R x e x     where  

0 1( ) ... n
n nQ x A A x A x    ,  and  0 1( ) ... n

n nR x B B x B x    , where the constants iA  

and iB  have to be determined. The power k is equal to 0 if i   is not a root of the 

characteristic equation. If i   is a simple root, then 1k  and k r  if i   is a root of 

mutiplicity r. 

Remark: If the nonhomogeneous term f(x) satisfies the following  

 1 2
1

( ) ( ) ( ) ... ( ) ( )
N

N i
i

f x f x f x f x f x


      , 

where ( )if x are of the forms cited above, then we split the original equation into N equations  

 ( ) ( 1)
1 1 0... ( )n n

n iy a y a y a y f x
      ,  1,2,...,i N  . 

Then find a particular solution ( )iY x . A particular solution to the original equation is given 

by  

 1 2
1

( ) ( ) ( ) ... ( ) ( )
N

N i
i

Y x Y x Y x Y x Y x


      . 

Example:  Find a general solution to the equation  23 4 3 2sin 8x xy y y e x e       

Solution:  We split the equation into the following three equations:  

 (1) 23 4 3 xy y y e     , 

 (2) 3 4 2siny y y x     , 

 (3) 3 4 8 xy y y e      . 

The roots of the characteristic equation 2 3 4 0     are 1    and 4  . 

Particular solution to Equation (1): 

Since 2  , and 0  , then 2i   , which is not one of the roots. Then 0k  .  

The particular solution is given as  2
1

xY Ae  
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If we plug it into the equation (1), we get  

 2 2 2 24 6 4 3x x x xAe Ae Ae e    , 

which implies 
1

2
A    , that is,   2

1
1

2
xY e   . 

Particular solution to Equation (2): 

Since 0  , and 1  , then i i    , which is not one of the roots. Then 0k  .  

The particular solution is given as  2 cos sinY A x B x   . 

If we plug it into the equation (2), we get  

 ( cos sin ) 3( sin cos ) 4( cos sin ) 2sinA x B x A x B x A x B x x         ,  

which implies  

 
5 3 0

3 5 2

A B

A B

  
  

,  Easy calculations give 
3

17
A    and  

5

17
B    . That is 

 2
3 5

cos sin
17 17

Y x x   . 

Particular solution to Equation (3): 

Since 1   , and 0  , then 1i    , which is one of the roots. Then 1k  .  

The particular solution is given as  1
3

xY x Ae  . 

If we plug it into the equation (3), we get  

 ( 2) 3 ( 1) 4 8x x x xA x e A x e Axe e           , 

which implies 
8

5
A  , that is   3

8

5
xY xe  . 

A particular solution to the original equation is  

 21 3 5 8
( ) cos sin

2 17 17 5
x xY x e x x xe      . 

A general solution to the original equation is  

 4 2
1 2

1 3 5 8
( ) cos sin

2 17 17 5
x x x xy x C e C e e x x xe        . 
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