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1 DOUBLE INTEGRAL

1 Double integral

1.1 Double integral over rectangular domain

As the definite integral of a continuous positive function of one variable represents the
area of the region between the graph and the x-axis, the double integral of a continuous
positive function of two variables represents the volume of the region between the surface
defined by the function z = f (x, y) and the xy-plane which contains its domain. We start
with rectangular domain

D =
{
[x, y] ∈ R2 : x ∈ [a, b] , y ∈ [c, d]

}
on the xy-plane according to figure.
We divide interval [a, b], resp. [c, d] by sequences of points

a = x0 < x1 < x2 < . . . < xm = b,

resp.
c = y0 < y1 < y2 < . . . < yn = d

to intervals [xi−1, xi] , i = 1, 2, . . . , m, resp.
[
yj−1, yj

]
, j = 1, 2, . . . , n. We denote sizes of

each component ∆xi = xi − xi−1, ∆yj = yj − yj−1.
This way is the whole rectangular domain divided into m · n small rectangles with area
∆Dij = ∆xi · ∆yj. Now we can choose an arbitrary point [ξi, ηj] in each rectangle Dij and
we can evaluate the volume of a prism with basis Dij and height z = f (ξi, ηj). The sum of
the volumes

m

∑
i=1

n

∑
j=1

f (ξi, ηj) · ∆xi · ∆yj

represents the volume of the body consisted of such prisms over all rectangles Dij if
f (x, y) ≥ 0 on D.

Definition

If there exists

lim
m

∑
i=1

n

∑
j=1

f (ξi, ηj)∆xi∆yj

for m→ ∞, n→ ∞, ∆xi → 0, ∆yj → 0 for all i = 1, 2, . . . , m, j = 1, 2, . . . , n, we call it the
double integral of a function f (x, y) over the rectangular domain D and denote it∫∫

D

f (x, y)dx dy.
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1 DOUBLE INTEGRAL

Theorem (Fubini’s theorem)

Let D =
{
[x, y] ∈ R2 : x ∈ [a, b] , y ∈ [c, d]

}
. If function f (x, y) is continuous on rectan-

gle D, then

∫∫
D

f (x, y)dx dy =

b∫
a

 d∫
c

f (x, y)dy

 dx =

d∫
c

 b∫
a

f (x, y)dx

 dy.

In fact there are two ways of computing the double integral. If the inner differential is dy
then the limits of the inner integral must have y limits of integration and outer integral

must have x limits of integration. We calculate the integral
d∫

c

f (x, y)dy by holding x con-

stant and integrating with respect to y as if this were a single integral (similar approach
is used for partial derivatives of function of more than one variable). This will result as a
function of a single variable x which can be integrated once again. We use similar approach
for the second way of computing the double integral. We usually write

b∫
a

 d∫
c

f (x, y)dy

 dx =

b∫
a

dx
d∫

c

f (x, y)dy

and
d∫

c

 b∫
a

f (x, y)dx

 dy =

d∫
c

dy
b∫

a

f (x, y)dx.

Theorem (Properties of the double integral over a rectangular domain)

1.
∫∫
D

c f (x, y)dx dy = c
∫∫
D

f (x, y)dx dy,

2.
∫∫
D

( f (x, y) + g(x, y))dx dy =
∫∫
D

f (x, y)dx dy +
∫∫
D

g(x, y)dx dy,
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1 DOUBLE INTEGRAL

3.
∫∫
D

f (x, y)dx dy =
∫∫
D1

f (x, y)dx dy +
∫∫
D2

f (x, y)dx dy,

where f , g are continuous functions on D, c ∈ R and D1, D2 are non-overlapping rect-
angles that fulfil
D = D1 ∪ D2.

Example 1

Compute I =
∫∫
D

(2xy + 4x)dx dy over the domain D : 0 ≤ x ≤ 2, −1 ≤ y ≤ 3.

We will show both ways of the computing
a) by integrating the inner integral with respect to variable x

I =
∫∫
D

(2xy + 4x)dx dy =

3∫
−1

 2∫
0

(2xy + 4x)dx

 dy

=

3∫
−1

[
x2y + 2x2

]2

0
dy =

3∫
−1

(4y + 8)dy =
[
2y2 + 8y

]3

−1
= 48

b) by integrating the inner integral with respect to variable y

I =
2∫

0

 3∫
−1

(2xy + 4x)dy

 dx =

2∫
0

[
xy2 + 4xy

]3

−1
dx

=

2∫
0

((9x + 12x)− (x− 4x))dx =

2∫
0

24x dx =
[
12x2

]2

0
= 48

If the integrand f (x, y) can be written as a multiplication of two functions of one variable
f (x, y) = f1(x) · f2(y), then it holds:

∫∫
D

f (x, y)dx dy =

b∫
a

f1(x)dx ·
d∫

c

f2(y)dy.

Compute the integral by using decomposition on two functions of one variable.

I =
∫∫
D

2x(y + 2)dx dy =

2∫
0

2x dx ·
3∫
−1

(y + 2)dy

=
[

x2
]2

0
·
[

y2

2
+ 2y

]3

−1
= 4 ·

[(
9
2
+ 6
)
−
(

1
2
− 2
)]

= 48
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Remark

If the decomposition is not possible, we can always use Fubini’s theorem.

Example 2

Compute I =
∫∫
D

x
√

x2 + y dx dy over the domain D : 0 ≤ x ≤ 1, 0 ≤ y ≤ 3.

I =
3∫

0

dy
1∫

0

x
√

x2 + y dx =

∣∣∣∣ t = x2 + y 0→ y
dt = 2x dx 1→ y + 1

∣∣∣∣ = 1
2

3∫
0

dy

y+1∫
y

√
t dt

=
1
2

3∫
0

[
2
3

√
t3
]y+1

y
dy =

1
3

3∫
0

(√
(y + 1)3 −

√
y3
)

dy =
1
3

[
2
5

√
(y + 1)5 − 2

5

√
y5
]3

0

=
2

15

(
32− 9

√
3− 1

)
=

2
15

(
31− 9

√
3
)

.

Example 3

Compute I =
∫∫
D

(
2x2y + y3

)
cos x dx dy over the domain D : 0 ≤ x ≤ π

2
, −1 ≤ y ≤ 1.

Remark

Although generally the order of integration doesn’t matter, in some cases the integral
can be easily solved by using one way of integration while it can be rather complicated
using the other way. Everything depends on the integrand f (x, y) itself and on the limits
of integration.

a) First we integrate the inner integral with respect to variable x

I =
∫ 1

−1
dy
∫ π

2

0

(
2x2y + y3

)
cos x dx =

∣∣∣∣ u = 2x2y + y3 v′ = cos x
u′ = 4xy v = sin x

∣∣∣∣
=
∫ 1

−1

([(
2x2y + y3

)
sin x

] π
2

0
−
∫ π

2

0
4xy sin x dx

)
dy =

∣∣∣∣ u = 4xy v′ = sin x
u′ = 4y v = − cos x

∣∣∣∣
=
∫ 1

−1

(
π2

2
y + y3 − [−4xy cos x]

π
2
0 +

∫ π
2

0
−4y cos x dx

)
dy

=
∫ 1

−1

(
π2

2
y + y3 − 4y [sin x]

π
2
0

)
dy =

∫ 1

−1

(
π2

2
y + y3 − 4y

)
dy

=

[
π2

4
y2 +

y4

4
− 2y2

]1

−1
=

π2

4
+

1
4
− 2−

(
π2

4
+

1
4
− 2
)
= 0.

b) Now we integrate the inner integral with respect to variable y

I =
∫ π

2

0
dx
∫ 1

−1

(
2x2y + y3

)
cos x dy =

∫ π
2

0

[(
x2y2 +

y4

4

)
cos x

]1

−1
dx

=
∫ π

2

0

((
x2 +

1
4

)
cos x−

(
x2 +

1
4

)
cos x

)
dx =

∫ π
2

0
0 dx = 0.
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Exercise 4

Compute following integrals over their domains D.

a)
∫∫
D

√
5x + 4 ln y dx dy, D : 0 ≤ x ≤ 1, 1 ≤ y ≤ 3

b)
∫∫
D

(
x2 + y2

)
dx dy, D : − 2 ≤ x ≤ 0, −1 ≤ y ≤ 2

c)
∫∫
D

sin(2x + y)dx dy, D : 0 ≤ x ≤ π,
π

4
≤ y ≤ π

d)
∫∫
D

1
(x + y + 1)2 dx dy, D : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

1.2 Double integral over a general domain

There is no reason to limit our problem to rectangular regions. The integral domain can
be of a general shape. We extend the Riemann’s definition of the double integral over
rectangular domain to a closed connected bounded domain Ω without any problem. The
domain is connected if we can connect every two points from it by curve that lies within the
domain. We can always find a rectangle D that fulfils Ω ⊆ D and we can define function
f ∗(x, y) by

f ∗(x, y) =

{
f (x, y) ∀ [x, y] ∈ Ω,
0 ∀ [x, y] ∈ D \Ω.

Then it holds
∫∫
Ω

f (x, y)dx dy =
∫∫
D

f ∗(x, y)dx dy.

z

0

x yΩ

z = f (x, y)

D

The properties of the double integral over a general domain must correspond to next The-
orem:

Theorem (Properties of the double integral over a general domain)

1.
∫∫
Ω

c f (x, y)dx dy = c
∫∫
Ω

f (x, y)dx dy,
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2.
∫∫
Ω

( f (x, y) + g(x, y))dx dy =
∫∫
Ω

f (x, y)dx dy +
∫∫
Ω

g(x, y)dx dy,

3.
∫∫
Ω

f (x, y)dx dy =
∫∫
Ω1

f (x, y)dx dy +
∫∫
Ω2

f (x, y)dx dy,

where f , g are continuous functions on Ω, c ∈ R and Ω1, Ω2 are non-overlapping do-
mains that fulfil Ω = Ω1 ∪Ω2.

There are two types of domains we need to look at.

Definition

1. Normal domain with respect to the x-axis is bounded by lines x = a, x = b, where
a < b, and continuous curves y = g1(x), y = g2(x), where g1(x) < g2(x), for all
x ∈ [a, b] .

2. Normal domain with respect to the y-axis is bounded by lines y = c, y = d, where
c < d, and continuous curves x = h1(y), x = h2(y), where h1(y) < h2(y), for all
y ∈ [c, d] .

y = g2(x)

y = g1(x)

a b

Ω

x

y

x = h2(y)x = h1(y)

c

d

Ω

x

y

Theorem (Fubini’s theorem)

1. If the function f (x, y) is continuous on a domain that is normal with respect to the
x-axis, then it holds

∫∫
Ω

f (x, y)dx dy =

b∫
a

dx

g2(x)∫
g1(x)

f (x, y)dy.

2. If the function f (x, y) is continuous on a domain that is normal with respect to the
y-axis, then it holds

∫∫
Ω

f (x, y)dx dy =

d∫
c

dy

h2(y)∫
h1(y)

f (x, y)dx.
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Example 5

Determine integration limits for
∫∫
Ω

f (x, y)dx dy over the domain Ω, which is bounded

by curves y2 = 2x and x = 2.

We need to find intersections of curves y2 = 2x and x = 2 by solving the system of these
two equations. We can eliminate variable x, receive equation y2 = 4 and solve it. We
obtain two solutions y1 = 2, y2 = −2. Given curves intersects each other in points [2,−2]
and [2, 2]. Treating the domain Ω as a normal with respect to the x-axis, we can see the
domain is bounded by 0 ≤ x ≤ 2, while limits for variable y must be obtained from the
equation y2 = 2x. Therefore y = ±

√
2x.

We can express inequalities for Ω in the form:

Ω : 0 ≤ x ≤ 2,

−
√

2x ≤ y ≤
√

2x

and according to Fubini’s theorem

∫∫
Ω

f (x, y)dx dy =

2∫
0

dx

√
2x∫

−
√

2x

f (x, y)dy.

We can use a similar procedure and express the integral as an integral over normal domain
with respect to the y-axis with inequalities

Ω : −2 ≤ y ≤ 2,

y2

2
≤ x ≤ 2.

The double integral then takes form

∫∫
Ω

f (x, y)dx dy =

2∫
−2

dy
2∫

y2
2

f (x, y)dx.

y =
√

2x

y = −
√

2x

x = 2Ω

x1 3 42

y

−2

−1

1

2

0
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Example 6

Determine integration limits for
∫∫
Ω

f (x, y) dx dy over the domain Ω, which is a triangle

ABC, where A = [−3, 1], B = [5, 1], C = [1, 5].

Remark

Lines can be described algebraically by linear equations y = ax + b. We substitute coor-
dinates of points A and C to the equation and we obtain system of two linear equations
from which we calculate a and b:

A : 1 = −3a + b
C : 5 = a + b

We get a = 1, b = 4 and y = x + 4.

x−6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8

y

−1

2

3

4

5

6

7

0

Ω1 Ω2
y = 1

y = −x + 6
x = 6− y

y = x + 4
x = y− 4

A=[-3,1] B=[5,1]

C=[1,5]

First, we express the domain as normal with respect to the x-axis. If we bound the domain
by −3 ≤ x ≤ 5, the upper limit of inner integral can’t be written as one curve and we need
to divide the domain Ω into two subdomains Ω1, Ω2 by line x = 1:

Ω1 : − 3 ≤ x ≤ 1, Ω2 : 1 ≤ x ≤ 5,
1 ≤ y ≤ x + 4, 1 ≤ y ≤ 6− x.

Using Fubini’s theorem we can express

∫∫
Ω

f (x, y) dx dy =

1∫
−3

dx
x+4∫
1

f (x, y) dy +

5∫
1

dx
6−x∫
1

f (x, y) dy.

However, it is much better to express the domain as normal with respect to the y-axis.
There is no reason to split the domain which is now bounded by inequalities

Ω : 1 ≤ y ≤ 5,
y− 4 ≤ x ≤ 6− y,
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where we have expressed a variable x from boundary equations. The integral is written in
the form ∫∫

Ω

f (x, y)dx dy =

5∫
1

dy

6−y∫
y−4

f (x, y)dx.

Example 7

Compute
∫∫
Ω

xy dx dy, Ω is bounded by y =
x
2

, y =
√

x, x ≥ 2.

Solving the system of equations y =
x
2

, y =
√

x we receive intersections of both curves in
x = 0, x = 4.

y =
√

x

y = x
2x = 2

x1 3 4 5 6 72

y

1

2

3

0

It is better to express the domain as normal with respect to x-axis with boundaries

Ω : 2 ≤ x ≤ 4,
x
2
≤ y ≤

√
x

and compute the integral

∫∫
Ω

xy dx dy =

4∫
2

dx

√
x∫

x/2

xy dy =

4∫
2

x
[

y2

2

]√x

x/2
dx =

4∫
2

(
x2

2
− x3

8

)
dx =

[
x3

6
− x4

32

]4

2
=

11
6

.

The second approach requires splitting the domain into two subdomains. It is a good
exercise to compute the example this way.

Exercise 8

Compute following integrals over their domains Ω.

a)
∫∫
Ω

(
5x2 − 2xy

)
dx dy, Ω is triangle ABC, where A = [0, 0], B = [2, 0], C = [0, 1]

b)
∫∫
Ω

x2 dx dy, Ω : y =
16
x

, y = x, x = 8

c)
∫∫
Ω

6xy dx dy, Ω : y = 0, x = 2, y = x2

12
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d)
∫∫
Ω

xy dx dy, Ω : x2 + 4y2 ≤ 4, x ≥ 0, y ≥ 0

e)
∫∫
Ω

(1− 2x− 3y)dx dy, Ω : x2 + y2 ≤ 2

1.3 Double integral in polar coordinates

At this moment we are able to compute the double integral over a general domain. In this
section we want to look at some domains that are easier to describe in a terms of polar
coordinates. We might have a domain that is a disc, ring or part of a disc or ring. Let
us consider a double integral of an arbitrary function over the disc with the center in the
origin of coordinates and with the radius r = 2 (same domain that is used in last Exercise).
Using Cartesian coordinates we obtain limits of the integral

Ω : −2 ≤ x ≤ 2,

−
√

4− x2 ≤ y ≤
√

4− x2.

and by Fubini’s theorem the integral can be written in the form

∫∫
Ω

f (x, y)dx dy =

2∫
−2

dx

√
4−x2∫

−
√

4−x2

f (x, y)dy.

x−4 −3 −2 −1 1 2 3

y

−1

1

2

3

5

0

[x, y]→ [ρ, ϕ]

[−3, 4]→ [5, 0.70483π]

A

ρ

ϕ

In such cases using Cartesian coordinates can be tedious. However, we are able to replace
Cartesian coordinates x, y by polar coordinates ρ, ϕ, where ρ denotes a distance between
the point [x, y] and the origin of coordinates and is called a radius, and, ϕ denotes the
positively oriented angle between positive part of the x-axis and the radius vector and is
called angular coordinate or azimuth.

13
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The transformation to cylindrical coordinates is given by transformation equations

x = ρ cos ϕ,
y = ρ sin ϕ.

Transformation to polar coordinates is a special case of mapping region Ω onto Ω∗ that is
an image of Ω in polar coordinates in our case. For example a disc with the center in the
origin of coordinates and with the radius r = 2,

Ω =
{
[x, y] : x2 + y2 ≤ 4

}
,

is mapped onto
Ω∗ = {[ρ, ϕ] : ρ ∈ (0, 2 ] , ϕ ∈ [0, 2π )} .

Theorem (Transformation to general coordinates)

• Let equations x = u(r, s), y = v(r, s) map the region Ω bijectively to the region Ω∗.

• Let function f (x, y) be continuous and bounded on Ω and functions x = u(r, s),
y = v(r, s) have continuous partial derivatives on Ω̂ that fulfils Ω∗ ⊂ Ω̂.

• Let J(u, v) =

∣∣∣∣∣∣∣
∂u
∂r

∂u
∂s

∂v
∂r

∂v
∂s

∣∣∣∣∣∣∣ 6= 0 in Ω∗.

Then ∫∫
Ω

f (x, y)dx dy =
∫∫
Ω∗

f (u(r, s), v(r, s))|J(u, v)|dr ds.

Determinant

J(u, v) =

∣∣∣∣∣∣∣
∂u
∂r

∂u
∂s

∂v
∂r

∂v
∂s

∣∣∣∣∣∣∣
is called Jacobian or Jacobi determinant.
We will use this theorem for transformation of the double integral to polar coordinates
as well as the triple integral to cylindrical and spherical coordinates. According to the
theorem we replace square element dx dy by |J| dρ dϕ, where the Jacobian of the transfor-
mation to polar coordinates satisfies

J(ρ, ϕ) =

∣∣∣∣∣∣∣∣
∂x
∂ρ

∂x
∂ϕ

∂y
∂ρ

∂y
∂ϕ

∣∣∣∣∣∣∣∣ =
∣∣∣∣ cos ϕ −ρ sin ϕ

sin ϕ ρ cos ϕ

∣∣∣∣ = ρ.

14
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The transformation of the double integral to polar coordinates can be written in the form∫∫
Ω

f (x, y)dx dy =
∫∫
Ω∗

f (ρ cos ϕ, ρ sin ϕ)ρ dρ dϕ.

Example 9

Compute
∫∫
Ω

y dx dy over the domain Ω =
{
[x, y] : x2 + y2 ≤ 9, y ≥ 0

}
using transfor-

mation to polar coordinates.

Ω

x−3 −2 −1 1 2 3 4

y

1

2

4

0

The domain Ω is an upper half of the disc with the center in the origin of coordinates and
with radius r = 3. We use transformation to polar coordinates and obtain the domain

Ω∗ : 0 < ρ ≤ 3,
0 ≤ ϕ ≤ π.

We have ∫∫
Ω

y dx dy =
∫∫
Ω∗

ρ sin ϕ · ρ dρ dϕ =

3∫
0

ρ2 dρ ·
π∫

0

sin ϕ dϕ

=

[
ρ3

3

]3

0
· [− cos ϕ]π0 = 18.

Example 10

Compute
∫∫
Ω

x dx dy over the domain Ω =
{
[x, y] : 4 ≤ x2 + y2 ≤ 9, y ≥ x, x ≥ 0}.

We can see real advantage of the transformation on this domain. While using Cartesian
coordinates would be complicated, domain

Ω∗ =
{
[ρ, ϕ] : ρ ∈ [2, 3] , ϕ ∈

[π

4
,

π

2

]}
for polar coordinates is rectangular.

15
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Ω

y = x

x

y

0 2 3

∫∫
Ω

x dx dy =
∫∫
Ω∗

ρ cos ϕ · ρ dρ dϕ =

3∫
2

ρ2 dρ ·
π/2∫

π/4

cos ϕ dϕ

=

[
ρ3

3

]3

2
· [sin ϕ]π/2

π/4 =
19
3

(
1−
√

2
2

)
Example 11

Calculate limits of the integral transformed to polar coordinates for the domain
Ω =

{
[x, y] : x2 + y2 ≤ 2ax

}
.

Ω

xa 2a

y

0

First, we find the center and radius of the disc.

x2 + y2 ≤ 2ax
x2 − 2ax + a2 + y2 ≤ a2

(x− a)2 + y2 ≤ a2

We have found that center S = [a, 0] and radius r = a.

16
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Remark

Although, limits of ϕ are usually between 0 ≤ ϕ ≤ 2π, in such cases, we use negative
limits, to prevent splitting of the domain.

The azimuth must fulfil −π

2
≤ ϕ ≤ π

2
. We can see that the upper limit of coordinate ρ

depends on the azimuth ϕ. We obtain the value of the limit by substituting transformation
equations to boundary equations of Ω.

x2 + y2 = 2ax
ρ2 cos2 ϕ + ρ2 sin2 ϕ = 2aρ cos ϕ

ρ2 = 2aρ cos ϕ

ρ(ρ− 2a cos ϕ) = 0

Roots ρ1 = 0 and ρ2 = 2a cos ϕ are limits of the integral. However, it is necessary to realise
the dependency of coordinate ρ on coordinate ϕ. We can’t calculate integrals over such
domains as in case of rectangular ones. We need to use Fubini’s theorem. The integral of
an arbitrary function can be written as

∫∫
Ω

f (x, y)dx dy =

π/2∫
−π/2

dϕ

2a cos ϕ∫
0

f (ρ cos ϕ, ρ sin ϕ)ρ dρ.

Exercise 12

Compute following integrals over their domains Ω.

a)
∫∫
Ω

(1− 2x− 3y)dx dy, Ω : x2 + y2 ≤ 2

b)
∫∫
Ω

√
1− x2 − y2 dx dy, Ω : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0

c)
∫∫
Ω

sin
√

x2 + y2 dx dy, Ω : π2 ≤ x2 + y2 ≤ 4π2

d)
∫∫
Ω

ln
(
x2 + y2)

x2 + y2 dx dy, Ω : 1 ≤ x2 + y2 ≤ e

e)
∫∫
Ω

√
4− x2 − y2 dx dy, Ω : x2 + y2 ≤ 2x

f)
∫∫
Ω

xy dx dy, Ω : x2 + y2 ≤ 4y, y ≥ x ≥ 0

17
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1.4 Double integral in generalized polar coordinates

Example 13

Compute
∫∫
Ω

√
4− x2

9
− y2

4
dx dy over Ω =

{
[x, y] : 4x2 + 9y2 ≤ 36

}
using transforma-

tion to generalized polar coordinates.

The boundary of the domain can be written in the form
x2

9
+

y2

4
= 1. Therefore, the domain

is ellipse with center in the origin of coordinates and semi-axis a = 3, b = 2.

Ω

x

y

0

2

3

In such case we use generalized polar coordinates in the form

x = aρ cos ϕ,
y = bρ sin ϕ.

For Jacobian of the transformation we obtain

J(ρ, ϕ) =

∣∣∣∣∣∣∣∣
∂x
∂ρ

∂x
∂ϕ

∂y
∂ρ

∂y
∂ϕ

∣∣∣∣∣∣∣∣ =
∣∣∣∣ a cos ϕ −aρ sin ϕ

b sin ϕ bρ cos ϕ

∣∣∣∣ = abρ.

Using generalized polar coordinates we obtained transformed domain

Ω∗ = {[ρ, ϕ] : ρ ∈ (0, 1 ] , ϕ ∈ [0, 2π )}
and we can solve the integral now.∫∫

Ω

√
4− x2

9
− y2

4
dx dy =

∫∫
Ω∗

√
4− (3ρ cos ϕ)2

9
− (2ρ sin ϕ)2

4
6ρ dρ dϕ

= 6
∫∫
Ω∗

√
4− ρ2ρ dρ dϕ = 6

2π∫
0

dϕ ·
1∫

0

√
4− ρ2ρ dρ = 6 · 2π · 1

3

(
8− 3

√
3
)

= 4π
(

8− 3
√

3
)

Integral over coordinate ρ was calculated using substitution

4− ρ2 = t,
−2ρ dρ = dt.
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Exercise 14

Compute following integrals over their domains Ω.

a)
∫∫
Ω

(2x + y)dx dy, Ω : 4x2 + y2 ≤ 16, y ≤ 0, x ≤ 0

b)
∫∫
Ω

xy dx dy, Ω : x2 + 4y2 ≤ 4, x ≥ 0, y ≥ 0

1.5 Practical applications of the double integral

1.5.1 Area of a region

The area of a region Ω is given by

A =
∫∫
Ω

dx dy.

Example 15

Calculate the area of a region Ω bounded by curves y = x2, y = 4− x2.

We need to find intersections of both parabolas y = x2, y = 4− x2 that are x = ±
√

2. We
write the domain as a normal with respect to the x-axis with inequalities in the form:

Ω : −
√

2 ≤ x ≤
√

2,

x2 ≤ y ≤ 4− x2.

y = 4− x2

y = x2

Ω

−
√

2
√

2

2

x

y

4

0 2−2

We compute the area of our region using symmetry of the domain with respect to the y-axis

A =
∫∫
Ω

dx dy =

√
2∫

−
√

2

dx
4−x2∫
x2

dy
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= 2

√
2∫

0

(
4− 2x2

)
dx = 2

[
4x− 2

3
x3
]√2

0
=

16
√

2
3

.

Example 16

Compute the area of domain

Ω = {[x, y] : x− y− 1 ≤ 0, x− 2y + 1 ≥ 0, 0 ≤ y ≤ 1} .

Domain is bounded by the lines y = 0, y = 1, y = x − 1 and y =
x + 1

2
. If we write the

domain as a normal with respect to the x-axis, we have to split the domain. It is a good
exercise to compute the example in this way.

y = x− 1
Ω1

Ω2

y = x+1
2

x−1 1 2 3 4

y

−1

1

2

0

We write the domain as a normal with respect to the y-axis with inequalities in the form:

Ω : 2y− 1 ≤ x ≤ y + 1,
0 ≤ y ≤ 1

x = y + 1Ω

x = 2y− 1

x−1 1 2 3 4

y

−1

1

2

0

and compute the area of Ω:

A =
∫∫
Ω

dx dy =

1∫
0

dx

y+1∫
2y−1

dy =

1∫
0

(2− y)dy =

[
2y− y2

2

]1

0
=

3
2

.
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Exercise 17

Compute the areas of the regions bounded by curves.

a) y = x, y = 5x, x = 1

b) y = x2 − 8x + 12, y = −2x + 4

c) y = 2x, y = 2−2x, y = 4

d) x2 + y2 = 4, x2 + y2 = 4y

1.5.2 Volume of a body

The volume of the cylindrical body with basis Ω bounded by an arbitrary function
f (x, y) is given by

V =
∫∫
Ω

| f (x, y)|dx dy.

z

0

x yΩ

z = f (x, y)

Example 18

Calculate the volume of the body bounded by surfaces 2x + 3y = 12, 2z = y2, x = 0,
y = 0, z = 0.

The basis of the body lies in the plane z = 0. Planes 2x + 3y = 12, x = 0 and y = 0 are
perpendicular to the basis, thus they define the triangular domain Ω.

Ω
y = 4− 2

3 x

x1 2 3 4 5 6

y

1

2

3

4

0

Because z =
y2

2
≥ 0 for all [x, y] ∈ Ω, therefore the surface z =

y2

2
bounds the body from

above. We write the domain as a normal with respect to the x-axis with inequalities for Ω
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in the form:
Ω : 0 ≤ x ≤ 6,

0 ≤ y ≤ 4− 2
3

x.

We compute the volume of the body

V =
∫∫
Ω

y2

2
dx dy =

1
2

6∫
0

dx

4− 2
3 x∫

0

y2 dy =
1
2

6∫
0

[
y3

3

]4− 2
3 x

0
dx

=
1
6

6∫
0

(
4− 2

3
x
)3

dx =
1
6
·
(
−3

2

)[(
4− 2

3 x
)4

4

]6

0

= 16.

Exercise 19

Calculate the volumes of the bodies bounded by given surfaces.

a) x = 0, y = 0, z = 0, 6x + 3y + z− 12 = 0

b) z = 0, z = xy, y = 0, y =
√

x, x + y = 2

a) z = 0, 2y = x2, z = y2 − 4

b) z = 0, z = 1− x2 − y2

1.5.3 Surface area

We are able to compute the area of the surface z = f (x, y) where [x, y] is a point in the
region Ω. Function z = f (x, y) must have continuous partial derivatives on Ω. In this
case surface area is given by

S =
∫∫
Ω

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dx dy.

z

0

x yΩ

z = f (x, y)

Example 20

Calculate the area of a surface z =
√

2xy bounded by planes x = 1, x = 2, y = 1 and
y = 4.
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Partial derivatives of z are
∂z
∂x

=
y√
2xy

and
∂z
∂y

=
x√
2xy

. The domain Ω is a rectangle

given by inequalities
Ω : 1 ≤ x ≤ 2,

1 ≤ y ≤ 4

and we calculate the surface area

S =
∫∫
Ω

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dx dy =
∫∫
Ω

√
1 +

y2

2xy
+

x2

2xy
dx dy

=
∫∫
Ω

√
2xy + x2 + y2

2xy
dx dy =

∫∫
Ω

√
(x + y)2

2xy
dx dy =

∫∫
Ω

x + y√
2xy

dx dy

=

2∫
1

dx
4∫

1

(√
x
2
· y− 1

2 +
1√
2x
· y 1

2

)
dy =

2∫
1

[√
x
2
· 2y

1
2 +

1√
2x
· 2

3
y

3
2

]4

1
dx

=

2∫
1

(√
x
2
· 4 + 1√

2x
· 16

3
−
√

x
2
· 2− 1√

2x
· 2

3

)
dx =

2∫
1

(√
x
2
· 2 + 1√

2x
· 14

3

)
dx

=

2∫
1

(
2√
2
· x 1

2 +
14

3
√

2
· x− 1

2

)
dx =

[
2√
2
· 2

3
x

3
2 +

14
3
√

2
· 2x

1
2

]2

1

=
8
3
+

28
3
− 4

3
√

2
− 28

3
√

2
= 12− 32

3
√

2
= 12− 16

3

√
2.

Exercise 21

Compute the areas of the surfaces given by:

a) x + y + z = 4 bounded by planes x = 0, x = 2, y = 0, y = 2,

b) y2 + z2 = 9 bounded by planes x = 0, x = 2, y = −3, y = 3,

c) z = xy in the cylinder x2 + y2 = 4.

1.5.4 Center of mass

Let σ(x, y) > 0 be a surface density defined for each [x, y] ∈ Ω. The mass of a domain Ω
is defined by

m =
∫∫
Ω

σ(x, y)dx dy.

Static moment of the domain Ω with respect to the x-axis resp. y-axis is given by

Sx =
∫∫
Ω

y σ(x, y)dx dy resp. Sy =
∫∫
Ω

x σ(x, y)dx dy.
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The coordinates of the center of mass C = [ξ, η] can be expressed as

ξ =
Sy

m
, η =

Sx

m
.

Example 22

Compute the coordinates of the center of mass of the homogeneous region bounded by
curves y = x and y = x2.

The curves have intersections in points [0, 0] and [1, 1]. See figure.

C

y = x

y = x2

Ω

x1

y

1

0

We write the domain as a normal with respect to the x-axis with inequalities in the form:

Ω : 0 ≤ x ≤ 1,

x2 ≤ y ≤ x.

First we compute the mass of the homogeneous domain

m =
∫∫
Ω

σ(x, y)dxdy = σ

1∫
0

dx
x∫

x2

dy

= σ

1∫
0

(
x− x2

)
dx =

[
x2

2
− x3

3

]1

0
=

1
6

.

Then we calculate static moments

Sx =
∫∫
Ω

y σ(x, y)dx dy = σ

1∫
0

dx
x∫

x2

y dy = σ

1∫
0

[
y2

2

]x

x2
dx dy

= σ

1∫
0

(
x2

2
− x4

2

)
dx =

[
x3

6
− x5

10

]1

0
=

1
15

.
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Sy =
∫∫
Ω

x σ(x, y)dx dy = σ

1∫
0

dx
x∫

x2

x dy = σ

1∫
0

[xy]xx2 dx dy

= σ

1∫
0

(
x2 − x3

)
dx =

[
x3

3
− x4

4

]1

0
=

1
12

.

Coordinates of the center are

ξ =
Sy

m
=

1
2

, η =
Sx

m
=

2
5

and center of mass is

C = [ξ, η] =

[
1
2

,
2
5

]
.

Exercise 23

Compute the center of mass coordinates of the homogeneous region bounded by curves
y = x2, x = 4, y = 0.
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2 Triple integral

2.1 Triple integral over rectangular hexahedron

Let u = f (x, y, z) is a function of three variables that is continuous and bounded on the
rectangular hexahedron

G =
{
[x, y, x] ∈ R3 : x ∈ [a, b] , y ∈ [c, d] , z ∈ [e, h]

}
.

We divide intervals [a, b] , [c, d] , [e, h] by three sequences of points

a = x0 < x1 < x2 < . . . < xm = b,

c = y0 < y1 < y2 < . . . < yn = d

and
e = z0 < z1 < z2 < . . . < zp = h

to intervals [xi−1, xi], i = 1, 2, . . . , m,
[
yj−1, yj

]
, j = 1, 2, . . . , n and [zk−1, zk], k = 1, 2, . . . , p.

We denote ∆xi = xi − xi−1, ∆yj = yj − yj−1 and ∆zk = zk − zk−1.
The planes that lead through points xi or yj or zk parallel to coordinate planes divide the
hexahedron G to m · n · p small hexahedrons Gijk (see Figure) with volume of each
∆Gijk = ∆xi · ∆yj · ∆zk. We choose an arbitrary point [ξi, ηj, ζk] in each hexahedron Gijk
and we create products f (ξi, ηj, ζk) · ∆Gijk = f (ξi, ηj, ζk) · ∆xi · ∆yj · ∆zk that for positive
function f (x, y, z) ≥ 0 has a physical meaning of the mass of the hexahedron Gijk with
density f (ξi, ηj, ζk). The sum of these products

m

∑
i=1

n

∑
j=1

p

∑
k=1

f (ξi, ηj, ζk) · ∆xi · ∆yj · ∆zk

represents the mass of the body consisted of such hexahedrons.

Definition

If there exists

lim
m

∑
i=1

n

∑
j=1

p

∑
k=1

f (ξi, ηj, ζk) · ∆xi · ∆yj · ∆zk

for m → ∞, n → ∞, p → ∞, ∆xi → 0, ∆yj → 0, ∆zk → 0 for all i = 1, 2, . . . , m,
j = 1, 2, . . . , n, z = 1, 2, . . . , k, we call it a triple integral of function f (x, y, z) over the
rectangular hexahedron G and denote it by∫∫∫

G

f (x, y, z)dx dy dz.

The triple integral over a hexahedron G of a positive function f (x, y, z) > 0 has a meaning
of the mass of a hexahedron G with density f (x, y, z).
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Theorem (Fubini’s theorem)

Let G =
{
[x, y, z] ∈ R3 : x ∈ [a, b] , y ∈ [c, d] , z ∈ [e, h]

}
. If a function f (x, y, z) is contin-

uous on the hexahedron G, then

∫∫∫
G

f (x, y, z)dx dy dz =

b∫
a

 d∫
c

 h∫
e

f (x, y, z)dz

 dy

 dx.

The Theorem is similar to two-dimensional Fubini’s theorem. We can rewrite the formula
by using a different order of integration in five more ways. The triple integral is then
converted to three one-dimensional integrals. Similarly to the double integral, we can
write

b∫
a

 d∫
c

 h∫
e

f (x, y, z)dz

 dy

 dx =

b∫
a

dx
d∫

c

dy
h∫

e

f (x, y, z)dz.

If the integrand f (x, y, z) can be written as a product of three functions of one variable
f (x, y, z) = f1(x) · f2(y) · f3(z), it holds:

∫∫∫
G

f (x, y, z)dx dy dz =

b∫
a

f1(x)dx ·
d∫

c

f2(y)dy ·
h∫

e

f3(z)dz.

Theorem (Properties of the triple integral over a rectangular hexahedron)

1.
∫∫∫

G

c f (x, y, z)dx dy dz = c
∫∫∫

G

f (x, y, z)dx dy dz,

2.
∫∫∫

G

( f (x, y, z) + g(x, y, z))dx dy dz =
∫∫∫

G

f (x, y, z)dx dy dz

+
∫∫∫

G

g(x, y, z)dx dy dz,
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3.
∫∫∫

G

f (x, y, z)dx dy dz =
∫∫∫
G1

f (x, y, z)dx dy dz +
∫∫∫
G2

f (x, y, z)dx dy dz,

where f , g are continuous functions on G, c ∈ R and G1, G2 are non-overlapping hexa-
hedrons that fulfil G = G1 ∪ G2.

Example 24

Compute
∫∫∫

G

xy2z dx dy dz over the rectangular hexahedron

G =
{
[x, y, z] ∈ R3 : x ∈ [0, 2] , y ∈ [1, 3] , z ∈ [1, 2]

}
.

∫∫∫
G

xy2z dx dy dz =

2∫
0

x dx ·
3∫

1

y2 dy ·
2∫

1

z dz

=

[
x2

2

]2

0
·
[

y3

3

]3

1
·
[

z2

2

]2

1
= 2 ·

(
9− 1

3

)
·
(

2− 1
2

)
= 2 · 26

3
· 3

2
= 26

Remark

If it is not possible to decompose the integrand as a product of three one-dimensional
integrals we can always use Fubini’s theorem.

Example 25

Compute
∫∫∫

G

(x + y)dx dy dz over the rectangular hexahedron

G =
{
[x, y, z] ∈ R3 : x ∈ [0, 1] , y ∈ [0, 2] , z ∈ [0, 3]

}
.

∫∫∫
G

(x + y)dx dy dz =

1∫
0

dx
2∫

0

dy
3∫

0

(x + y)dz =

1∫
0

dx
2∫

0

(x + y) [z]30 dy

= 3
1∫

0

dx
2∫

0

(x + y)dy = 3
1∫

0

[
xy +

y2

2

]2

0
dx = 3

1∫
0

(2x + 2)dx

= 6
[

x2

2
+ x
]1

0
= 6 · 3

2
= 9

Exercise 26

Compute following integrals over their domains G.

a)
∫∫∫

G

xy2√z dx dy dz, G =
{
[x, y, z] ∈ R3 : x ∈ [−2, 1] , y ∈ [1, 3] , z ∈ [2, 4]

}
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b)
∫∫∫

G

1
1− x− y

dx dy dz, G =
{
[x, y, z] ∈ R3 : x ∈ [0, 1] , y ∈ [2, 5] , z ∈ [2, 4]

}

c)
∫∫∫

G

ln xyz dx dy dz, G =
{
[x, y, z] ∈ R3 : x ∈ [1, 2] , y ∈ [0, 1] , z ∈ [0, 2]

}

d)
∫∫∫

G

(
1
x
+

2
y
+

3
z

)
dx dy dz, G =

{
[x, y, z] ∈ R3 : x ∈ [1, 2] , y ∈ [1, 2] , z ∈ [1, 2]

}

e)
∫∫∫

G

ex+y+z dx dy dz, G =
{
[x, y, z] ∈ R3 : x ∈ [0, 1] , y ∈ [0, 1] , z ∈ [0, 1]

}

f)
∫∫∫

G

√
xyz dx dy dz, G =

{
[x, y, z] ∈ R3 : x ∈ [0, 1] , y ∈ [0, 9] , z ∈ [0, 16]

}

2.2 Triple integral over a general domain

Similarly like in two-dimensional case, we are able to generalize our problem of solving
triple integrals over any three-dimensional region Ω that is bounded by a closed surface.
We consider only such surfaces that don’t intersect themselves and lines parallel with z-
axis leading through an arbitrary inner point of the surface intersect with the surface in
two points. Such domain will be called normal domain with respect to the coordinate
plane xy.

We create an orthogonal projection Ω1 of the domain Ω into xy-plane. A variable z must
fulfil

f1(x, y) ≤ z ≤ f2(x, y).

The domain Ω1 is either normal with respect to x-axis or y-axis and we describe it using
approach from the Double integral section by inequalities x1 ≤ x ≤ x2, g1(x) ≤ y ≤ g2(x)
resp. y1 ≤ y ≤ y2, h1(y) ≤ x ≤ h2(y). If the function f (x, y, z) is continuous on Ω we use
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a method similar to Fubini’s theorem used in the Double integral section and express

∫∫∫
Ω

f (x, y, z)dx dy dz =

x2∫
x1

dx

g2(x)∫
g1(x)

dy

f2(x,y)∫
f1(x,y)

f (x, y, z)dz

resp. ∫∫∫
Ω

f (x, y, z)dx dy dz =

y2∫
y1

dy

h2(y)∫
h1(y)

dx

f2(x,y)∫
f1(x,y)

f (x, y, z)dz.

We start to integrate with respect to variable z, limits are functions of two variables x, y.
After that we calculate a double integral over a regular domain Ω1.
We are able to use analogical approach and create an orthogonal projection of the domain
Ω into planes either xz or yz. That way we can use six different orders of integration for an
arbitrary domain.

Remark

The triple integral over a general closed domain has analogical properties as the triple
integral over a rectangular hexahedron.

Example 27

Determine integration limits for integral
∫∫∫

Ω

f (x, y, z)dx dy dz over the domain Ω that

is bounded by surfaces z =
1
2

(
x2 + y2

)
and z = 4− 1

2

(
x2 + y2

)
.

z = 1
2

(
x2 + y2)

z = 4− 1
2

(
x2 + y2)

x−2 −1 1 2

z

1

2

3

0

4

Both surfaces are rotational paraboloids and based on the figure where we can see projec-
tion of the body into yz-plane

1
2

(
x2 + y2

)
≤ z ≤ 4− 1

2

(
x2 + y2

)
.

We obtain an equation of the intersection of both surfaces from the equation

1
2

(
x2 + y2

)
= 4− 1

2

(
x2 + y2

)
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which leads to
x2 + y2 = 4.

Therefore, the orthogonal projection Ω1 of the domain Ω to coordinate plane xy is a circle
with the center in the origin of coordinates and radius r = 2. That domain can be treated
as a normal domain with respect to the x-axis with inequalities

−2 ≤ x ≤ 2,

−
√

4− x2 ≤ y ≤
√

4− x2.

Example 28

Compute integral
∫∫∫

Ω

x dx dy dz over the domain Ω bounded by surfaces x = 0, y = 0,

z = 0, 2x + 2y + z− 6 = 0.

z

0

6

x 3

y
3

Ω1

Ω

y = 3− x

2x + 2y + z− 6 = 0

Based on the figure, the domain Ω must fulfil

0 ≤ z ≤ 6− 2x− 2y

The orthogonal projection Ω1 of the domain Ω to xy-plane is the triangle bounded by lines
x = 0, y = 0, y = 3− x. The last equation is intersection of planes 2x + 2y + z− 6 = 0 and
z = 0.
We describe Ω1 as normal with respect to x-axis by inequalities

Ω1 : 0 ≤ x ≤ 3,
0 ≤ y ≤ 3− x

and we can calculate the integral

∫∫∫
Ω

x dx dy dz =

3∫
0

dx
3−x∫
0

dy

6−2x−2y∫
0

x dz =

3∫
0

dx
3−x∫
0

[xz]6−2x−2y
0 dy

=

3∫
0

dx
3−x∫
0

x(6− 2x− 2y)dy =

3∫
0

x
[
6y− 2xy− y2

]3−x

0
dx
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=

3∫
0

x
[
6(3− x)− 2x(3− x)− (3− x)2

]
dx =

3∫
0

(x3 − 6x2 + 9x)dx

=

[
x4

4
− 2x3 +

9
2

x2
]3

0
=

27
4

.

Exercise 29

Compute following integrals over their domains Ω.

a)
∫∫∫

Ω

x3y2z dx dy dz, Ω = {[x, y, z] : y ≥ 0, y ≤ x, x ≤ 1, z ≥ 0, z ≤ xy}

b)
∫∫∫

Ω

1
1 + x + y

dx dy dz, Ω = {[x, y, z] : x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1}

c)
∫∫∫

Ω

x + z
4 + y

dx dy dz, Ω = {[x, y, z] : x ≥ 0, y ≥ 0, z ≥ 0, x + z ≤ 3, y ≤ 4}

d)
∫∫∫

Ω

y cos(x + z)dx dy dz, Ω =
{
[x, y, z] : y ≤

√
x, y ≥ 0, z ≥ 0, x + z ≤ π

2

}

e)
∫∫∫

Ω

dx dy dz, Ω =
{
[x, y, z] : x + y ≤ 1, y ≥ 0, y ≤ 2x, z ≥ 0, z ≤ 1− x2

}

f)
∫∫∫

Ω

z dx dy dz, Ω =
{
[x, y, z] : x2 + y2 ≤ 4, 0 ≤ z ≤ 2, y ≥ 0

}

2.3 Transformation of the triple integral

Similarly to the double integral, using Cartesian coordinates for some domains can be
rather complicated. Especially in case of cylinders, cones or spheres. Therefore, we formu-
late analogical theorem that describes general transformation of the triple integral.

Theorem (Transformation to general coordinates)

• Let equations x = u(r, s, t), y = v(r, s, t), z = w(r, s, t) map the region Ω bijectively
to the region Ω∗.

• Let function f (x, y, z) be continuous and bounded on Ω and functions x = u(r, s, t),
y = v(r, s, t), z = w(r, s, t) have continuous partial derivatives on Ω̂ that fulfils
Ω∗ ⊂ Ω̂.

• Let J(u, v, w) =

∣∣∣∣∣∣∣∣∣∣∣

∂u
∂r

∂u
∂s

∂u
∂t

∂v
∂r

∂v
∂s

∂v
∂t

∂w
∂r

∂w
∂s

∂w
∂t

∣∣∣∣∣∣∣∣∣∣∣
6= 0 in Ω∗.
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Then ∫∫∫
Ω

f (x, y, z)dx dy dz =
∫∫∫
Ω∗

f (u(r, s, t), v(r, s, t), w(r, s, t))|J|dr ds dt.

Determinant J(u, v, w) =

∣∣∣∣∣∣∣∣∣∣∣

∂u
∂r

∂u
∂s

∂u
∂t

∂v
∂r

∂v
∂s

∂v
∂t

∂w
∂r

∂w
∂s

∂w
∂t

∣∣∣∣∣∣∣∣∣∣∣
is again called Jacobian or Jacobi determinant.

2.3.1 Transformation to cylindrical coordinates

Transformation to cylindrical coordinates is suitable for integration domains such as cylin-
ders, cones or their parts. It is used in cases when orthogonal projection Ω1 of the domain
Ω to plane xy is a disc or a part of a disc. We replace Cartesian coordinates x, y, z by cylin-
drical coordinates ρ, ϕ, z, according to the following figure.

The meaning of coordinates ρ, ϕ is the same as we have already used for polar coordinates
and the third coordinate z doesn’t change.

The transformation to cylindrical coordinates is given by transformation equations

x = ρ cos ϕ,
y = ρ sin ϕ,
z = z.

According to theorem describing transformation to general coordinates, we replace volume
element dx dy dz by |J|dρ dϕ dz, where the Jacobian of the transformation to cylindrical
coordinates satisfies
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J(ρ, ϕ, z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂ρ

∂x
∂ϕ

∂x
∂z

∂y
∂ρ

∂y
∂ϕ

∂y
∂z

∂z
∂ρ

∂z
∂ϕ

∂z
∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos ϕ −ρ sin ϕ 0
sin ϕ ρ cos ϕ 0

0 0 1

∣∣∣∣∣∣ = ρ.

The transformation of the triple integral to cylindrical coordinates can then be written
in the form ∫∫∫

Ω

f (x, y, z)dx dy dz =
∫∫∫
Ω∗

f (ρ cos ϕ, ρ sin ϕ, z)ρ dρ dϕ dz.

Example 30

Compute
∫∫∫

Ω

dx dy dz over the domain Ω bounded by surfaces x2 + y2 = 1, z = 0,

z = 1.

The domain Ω is the rotational cylinder symetrical with respect to the z-axis, with radius
of the base ρ = 1 and height z = 1, according to the following figure.

We need to determine the bounds of the transformed domain Ω∗. It is obvious that
0 ≤ z ≤ 1. Inequalities for coordinates ρ, ϕ are the same as for transformation to polar
coordinates, i.e. 0 ≤ ρ ≤ 1, 0 ≤ ϕ ≤ 2π. Therefore

∫∫∫
Ω

dx dy dz =
∫∫∫
Ω∗

ρ dρ dϕ dz =

2π∫
0

dϕ ·
1∫

0

ρ dρ ·
1∫

0

dz

= [ϕ]2π
0 ·

[
ρ2

2

]1

0
· [z]10 = π.
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Example 31

Compute
∫∫∫

Ω

dx dy dz over the domain Ω bounded by surfaces z = 3x2 + 3y2,

z = 1− x2 − y2.

Both surfaces are paraboloids and the orthogonal projection Ω1 of the domain Ω to coordi-
nate plane x, y is a ring, whose equation we obtain from the intersection of both paraboloids

3x2 + 3y2 = 1− x2 − y2

x2 + y2 =
1
4

.

z = 1− x2

z = 3x2

−1
2

1
2

x−1 1

z

1

0

−1
2

1
2

x

y

0

x2 + y2 = 1
4

Ω1

Therefore, inequalities for coordinates ρ, ϕ must fulfil

0 ≤ ρ ≤ 1
2

, 0 ≤ ϕ ≤ 2π.

We obtain limits of the variable z from equations of both paraboloids by substituting of
variables

z = 3x2 + 3y2 = 3ρ2 cos2 ϕ + 3ρ2 sin2 ϕ = 3ρ2,

z = 1− x2 − y2 = 1− ρ2 cos2 ϕ− ρ2 sin2 ϕ = 1− ρ2.

Hence
3ρ2 ≤ z ≤ 1− ρ2.

We compute the integral by using transformation to cylindrical coordinates

∫∫∫
Ω

dx dy dz =
∫∫∫
Ω∗

ρ dρ dϕ dz =

2π∫
0

dϕ

1/2∫
0

dρ

1−ρ2∫
3ρ2

ρ dz

= 2π

1/2∫
0

ρ[z]1−ρ2

3ρ2 dρ = 2π

1/2∫
0

ρ
(

1− 4ρ2
)

dρ = 2π

1/2∫
0

(
ρ− 4ρ3

)
dρ

= 2π

[
ρ2

2
− ρ4

]1/2

0
= 2π · 1

16
=

π

8
.
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Exercise 32

Compute following integrals over their domains Ω.

a)
∫∫∫

Ω

dx dy dz, Ω =
{
[x, y, z] ∈ R3 : x2 + y2 ≤ 1, x ≥ 0, 0 ≤ z ≤ 6

}

b)
∫∫∫

Ω

z dx dy dz, Ω =
{
[x, y, z] ∈ R3 : x2 + y2 ≤ 9, x ≤ y ≤ x

√
3, 0 ≤ z ≤ 4

}

c)
∫∫∫

Ω

z dx dy dz, Ω =

{
[x, y, z] ∈ R3 : z ≥

√
x2 + y2, z ≤ 1

}

d)
∫∫∫

Ω

z
√

x2 + y2 dx dy dz, Ω =
{
[x, y, z] ∈ R3 : x2 + y2 ≤ 2x, 0 ≤ z ≤ 1

}

2.3.2 Transformation to spherical coordinates

Transformation to spherical coordinates is suitable for integrals where integration domains
are spheres, ellipsoids or their parts. We replace Cartesian coordinates x, y, z by spherical
coordinates ρ, ϕ, ϑ according to the following figure.

The coordinate ρ denotes a distance between the point [x, y, z] and the origin of the coor-
dinates, ϕ denotes positively oriented angle in coordinate xy-plane between positive part
of the x-axis and the projection ρ1 of the radius vector ρ to coordinate xy-plane and ϑ de-
notes positively oriented angle between positive part of the z-axis and the radius vector
ρ.

We obtain transformation equations

x = ρ cos ϕ sin ϑ,
y = ρ sin ϕ sin ϑ,
z = ρ cos ϑ.
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Jacobian of the transformation to spherical coordinates satisfies

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂ρ

∂x
∂ϕ

∂x
∂ϑ

∂y
∂ρ

∂y
∂ϕ

∂y
∂ϑ

∂z
∂ρ

∂z
∂ϕ

∂z
∂ϑ

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos ϕ sin ϑ −ρ sin ϕ sin ϑ ρ cos ϕ cos ϑ
sin ϕ sin ϑ ρ cos ϕ sin ϑ ρ sin ϕ cos ϑ

cos ϑ 0 −ρ sin ϑ

∣∣∣∣∣∣

= −ρ2 sin ϑ.

Transformation of the triple integral to spherical coordinates can be written in the form∫∫∫
Ω

f (x, y, z)dx dy dz

=
∫∫∫
Ω∗

f (ρ cos ϕ sin ϑ, ρ sin ϕ sin ϑ, ρ cos ϑ)ρ2 sin ϑ dρ dϕ dϑ.

The sphere with the center in the origin of coordinates and radius a transformed to spheri-
cal coordinates is mapped to domain Ω∗ given by inequalities

Ω∗ : 0 ≤ ρ ≤ a,
0 ≤ ϕ ≤ 2π,
0 ≤ ϑ ≤ π.

Example 33

Compute
∫∫∫

Ω

(
x2 + y2 + z2

)
dx dy dz over the domain Ω bounded by x2 + y2 + z2 ≥ 1

and x2 + y2 + z2 ≤ 4.

The domain Ω is bounded by two spherical surfaces with the center in the origin of co-
ordinates and radii ρ1 = 1, ρ2 = 2. We use transformation to spherical coordinates with
inequalities

Ω∗ : 1 ≤ ρ ≤ 2,
0 ≤ ϕ ≤ 2π,
0 ≤ ϑ ≤ π.

and calculate the integral using transformation to spherical coordinates∫∫∫
Ω

(
x2 + y2 + z2

)
dx dy dz

=
∫∫∫
Ω∗

(
ρ2 cos2 ϕ sin2 ϑ + ρ2 sin2 ϕ sin2 ϑ + ρ2 cos2 ϑ

)
ρ2 sin ϑ dρ dϕ dϑ
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=

2∫
1

dρ

2π∫
0

dϕ

π∫
0

ρ4 sin ϑ dϑ =

2∫
1

ρ4 dρ ·
2π∫
0

dϕ ·
π∫

0

sin ϑ dϑ

=

[
ρ5

5

]2

1
· [ϕ]2π

0 · [− cos ϑ]π0 =
31
5
· 2π · 2 =

124
5

π.

Example 34

Compute integral
∫∫∫

Ω

z dx dy dz over the domain Ω bounded by x2 + y2 + z2 ≤ 4,

x ≥ 0, y ≥ 0, z ≥ 0.

The domain Ω is one eighth of the sphere in the first octant with the center in the origin of
coordinates and radius ρ = 2. Therefore

Ω∗ : 0 ≤ ρ ≤ 2,

0 ≤ ϕ ≤ π

2
,

0 ≤ ϑ ≤ π

2
.

and ∫∫∫
Ω

z dx dy dz =
∫∫∫
Ω∗

ρ cos ϑ ρ2 sin ϑ dρ dϕ dϑ

=

2∫
0

dρ

π/2∫
0

dϕ

π/2∫
0

ρ3 sin ϑ cos ϑ dϑ =

2∫
0

ρ3 dρ ·
π/2∫
0

dϕ ·
π/2∫
0

1
2

sin 2ϑ dϑ

=

[
ρ4

4

]2

0
· [ϕ]π/2

0 ·
[
−1

4
cos 2ϑ

]π/2

0
= 4 · π

2
· 1

2
= π.

Exercise 35

Compute following integrals over their domains Ω.

a)
∫∫∫

Ω

z(x2 + y2)dx dy dz, Ω =
{
[x, y, z] : x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0

}

b)
∫∫∫

Ω

√
x2 + y2 + z2 dx dy dz,

Ω =
{
[x, y, z] : x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0

}
c)
∫∫∫

Ω

(x2 + y2)dx dy dz, Ω =
{
[x, y, z] : 4 ≤ x2 + y2 + z2 ≤ 9, z ≥ 0

}

d)
∫∫∫

Ω

dx dy dz
1 + x2 + y2 + z2 , Ω =

{
[x, y, z] : x2 + y2 + z2 ≤ 4, x ≤ y ≤ x

√
3, z ≥ 0

}
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2.4 Practical applications of the triple integral

2.4.1 Volume of a body

The volume of the body Ω is given by

V =
∫∫∫

Ω

dx dy dz.

Example 36

Compute the volume of the body bounded by cylindrical surfaces z = 5− y2, z = y2 + 3
and planes x = 0, x = 2.

While limits of variables x, z are obvious, we need to calculate intersections of cylindrical
surfaces to determine the limits of variable y.

5− y2 = y2 + 3
2y2 = 2

y = ±1.

z = 5− y2

z = 3 + y2

y−2 −1 1 2

z

1

2

4

3

5

Therefore, inequalities for the domain Ω are in the form

Ω : 0 ≤ x ≤ 2,
−1 ≤ y ≤ 1,

y2 + 3 ≤ z ≤ 5− y2.

We calculate volume of the body by using the triple integral

V =
∫∫∫

Ω

dx dy dz =

2∫
0

dx
1∫
−1

dy

5−y2∫
y2+3

dz =

2∫
0

dx
1∫
−1

[z]5−y2

y2+3 dy

=

2∫
0

dx ·
1∫
−1

(2− 2y2) dy = 2
[

2y− 2y3

3

]1

−1
= 2 · 8

3
=

16
3

.
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Example 37

Compute the volume of the body bounded by surfaces x2 + y2 + (z − r)2 = r2 and

z =
√

3x2 + 3y2.

The equation x2 + y2 + (z− r)2 = r2 describes the sphere with radius r and the center in

point S = [0, 0, r]. The second equation z =
√

3x2 + 3y2 describes the cone oriented along
the z-axis with vertex in the coordinates origin. We will transform the problem to spherical
coordinates. While the limits for azimuth ϕ must be 0 ≤ ϕ ≤ 2π, we have to find also the
limits for angle ϑ. Let us make the projection of the domain to yz-plane, which is visible

on the figure. By putting x = 0 in the equation of the cone z =
√

3x2 + 3y2 we obtain the
equation of both lines

z =
√

3y2 =
√

3|y|.

Therefore, the upper limit for the angle ϑ must fulfil

tan ϑ =
y
z
=

1√
3
=

√
3

3
.

Hence, the upper limit for ϑ =
π

6
. We can also find the upper limit for radius ρ. We trans-

form the equation of the sphere to x2 + y2 + z2− 2zr = 0 and then to spherical coordinates

ρ2 − 2rρ cos ϑ = 0
ρ(ρ− 2r cos ϑ) = 0

We have
Ω∗ : 0 ≤ ϕ ≤ 2π,

0 ≤ ϑ ≤ π

6
,

0 ≤ ρ ≤ 2r cos ϑ.

The limits of variable ρ depends on variable ϑ, therefore we have to start the calculation
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with inner integral with respect to variable ρ.

V =

2π∫
0

dϕ

π/6∫
0

dϑ

2r cos ϑ∫
0

ρ2 sin ϑ dρ = 2π

π/6∫
0

sin ϑ

[
ρ3

3

]2r cos ϑ

0
dϑ

=
16
3

πr3
π/6∫
0

sin ϑ cos3 ϑ dϑ =

∣∣∣∣∣∣
t = cos ϑ 0→ 1

dt = − sin ϑ dϑ
π

6
→
√

3
2

∣∣∣∣∣∣
= −16

3
πr3

√
3/2∫

1

t3 dt =
16
3

πr3
[

t4

4

]1

√
3/2

=
7

12
πr3.

Exercise 38

Compute the volume of body bounded by surfaces.

a) z = x2 + y2, z = y

b) x− y + z = 6, x + y = 2, x = y, y = 0, z = 0

c) y = x2, z = 0, y + z = 2

d) y = ln x, y = ln2 x, z = 0, y + z = 1

2.4.2 Mass of a body

Mass of the body Ω is given by

m =
∫∫∫

Ω

σ(x, y, z)dx dy dz

where σ(x, y, z) > 0 denotes volume density in each point of the domain Ω.

Example 39

Compute the mass of the body bounded by surfaces x2 + y2 + z2 ≤ 4. The volume
density in each point of Ω is equal to its distance to the coordinates origin.

The domain Ω is the sphere with center in the coordinate origin and radius 2. Therefore
we will calculate the problem by using transformation to spherical coordinates with trans-
formation equations

x = ρ cos ϕ sin ϑ,
y = ρ sin ϕ sin ϑ,
z = ρ cos ϑ.

The volume density in each point of Ω is equal to its distance to the coordinates origin,
therefore

σ =
√

x2 + y2 + z2 = ρ.
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After the transformation to spherical coordinates, the domain is rectangular given by in-
equations

Ω∗ 0 ≤ ρ ≤ 2,
0 ≤ ϕ ≤ 2π,
0 ≤ ϑ ≤ π.

Now, we can calculate mass of the sphere

m =
∫∫∫

Ω

√
x2 + y2 + z2 dx dy dz =

∫∫∫
Ω∗

ρ · ρ2 sin ϑ dρ dϕ dϑ

=

2π∫
0

dϕ ·
π∫

0

sin ϑ dϑ ·
2∫

0

ρ3 dρ = [ϕ]2π
0 · [−cosϑ]π0 ·

[
ρ4

4

]2

0

= 2π · 2 · 4 = 16π.

Exercise 40

a) Compute the mass of body x2 + y2 + z2 ≤ 1 with density σ =
2

x2 + y2 + z2 .

b) Compute the mass of body bounded by surfaces x2 = 2y, y + z = 1, 2y + z = 2,
with density σ = y.

2.4.3 Statical moments and moments of inertia

Let the domain Ω is a body with given density σ(x, y, z) > 0 in each point [x, y, z] ∈ Ω.
Statical moment of a body Sxy or Sxz or Sxz to coordinate plane xy or xz or yz is defined
by

Sxy =
∫∫∫

Ω

z σ(x, y, z)dx dy dz,

Sxz =
∫∫∫

Ω

y σ(x, y, z)dx dy dz,

Syz =
∫∫∫

Ω

x σ(x, y, z)dx dy dz.

The coordinations of center of mass C = [ξ, η, ζ] can then by calculated by

ξ =
Syz

m
, η =

Sxz

m
, ζ =

Sxy

m
,

where m is the mass of the body.
Moment of inertia of the body rotating around the x-axis resp. y-axis resp. z-axis is
given by

Ix =
∫∫∫

Ω

(
y2 + z2

)
σ(x, y, z)dx dy dz,
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Iy =
∫∫∫

Ω

(
x2 + z2

)
σ(x, y, z)dx dy dz,

Iz =
∫∫∫

Ω

(
x2 + y2

)
σ(x, y, z)dx dy dz.

Exercise 41

a) Calculate the statical moments of a body x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0 to
xy-plane. Consider constant density σ.

b) Calculate the statical moments of a cone with radius of the base r = 3 and height
h = 2 to plane that is parallel to the base going through the vertex of the cone.
Consider constant density σ.

c) Calculate the moments of inertia of the body bounded by surfaces x + 2y + 3z = 1,
x = 0, y = 0, z = 0 rotating around y-axis. Consider constant density σ.

d) Calculate the moments of inertia of the body bounded by surfaces x2 + y2 = z2,
z = 1 rotating around z-axis. Consider constant density σ.
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3 Theory of the field

3.1 Vector function

Definition

Let D ⊆ R. A vector function of one real variable t ∈ D is defined as a function of one
real variable whose range is a vector

f(t) = x(t) i + y(t) j + z(t) k = (x(t), y(t), z(t))

Components x(t), y(t), z(t) are real functions of variable t.

From the geometrical point of view the vector function f(t) describes the set of points in
three-dimensional space with coordinates [x(t), y(t), z(t)], t ∈ D. It will create the graph
of the vector function.
If x(t), y(t), z(t) are continuous for each t ∈ D = [a, b], then continuous vector function
f(t) defines three-dimensional curve, whose parametrical equations are given by x = x(t),
y = y(t), z = z(t), t ∈ [a, b] . From the physical point of view the vector function represent
the trajectory of moving mass point.
We can define all key concepts of calculus also for vector functions - limits, continuity,
derivatives, indefinite and definite integral. The calculation is made for each component
separately. We can also use all concepts of vector algebra for vector functions - operations
with vectors, inner and vector product.

Example 42

Draw the graph of the vector function

f = (1 + t) i + (2− t) j, t ∈ [0, 1].

The function is continuous on its domain. The graph is a two-dimensional curve. Paramet-
rical equations of curve

x = 1 + t,
y = 2− t, t ∈ [0, 1]

describes the segment of line AB, given by A = [x(0), y(0)] = [1, 2] and
B = [x(1), y(1)] = [2, 1], see figure.
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Example 43

Draw the graph of the vector function

f = 3 cos t i + 3 sin t j, t ∈ [0, 2π].

Function is continuous on its domain. The graph is a two-dimensional curve. Parametrical
equations of curve

x = 3 cos t,
y = 3 sin t, t ∈ [0, 2π]

describes circle with center in the coordinate origin and radius r = 3, see figure. Starting
and ending point of the curve is the same

A = B = [x(0), y(0)] = [x(2π), y(2π)] = [3, 0].

We can prove it by raising both parametrical equations to the second power

x2 = 9 cos2 t, y2 = 9 sin2 t

and summing them together

x2 + y2 = 9(cos2 t + sin2 t) = 9.

Example 44

Draw the graph of the vector function

f = cos t i + sin t j + t k, t ∈ [0,+∞).

Function is continuous on its domain. The graph is a three-dimensional curve. Parametri-
cal equations of curve

x = cos t,
y = sin t,
z = t, t ∈ [0, ∞)

define the screw line with starting point [1,0,0] on cylindrical surface x2 + y2 = 1. Analogi-
cally to the previous example, we can obtain this equation by raising first two parametrical
equations to the second power and summing them together, see figure.
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Exercise 45

Draw the graph of the vector function.

a) f = 2 cos t i + 3 sin t j, t ∈ [0, 2π)

b) f = t2 i + t j, t ∈ (−∞,+∞)

3.2 Scalar field

Definition

Scalar field on the domain Ω ⊂ R3 is given by an scalar function u = u(x, y, z) defined
on Ω.

Scalar field assigns one real number (scalar) to each point in Ω. The rate of change of the
scalar field is given by directional derivative.

Definition

Let the scalar field u = u(x, y, z) is given on the domain Ω, point A = [a1, a2, a3] ∈ Ω
and unit vector s = (s1, s2, s3). We define the limit

lim
t→0+

u(A + ts)− u(A)

t

as directional derivative of the scalar field u(x, y, z) in the point A along the vector s

and we denote it by
du(A)

ds
.

Theorem

Let partial derivatives of the scalar function u exist in the point A ∈ Ω. The directional
derivative of the scalar field u(x, y, z) in the point A along the unit vector s can be written
in the form

du(A)

ds
=

∂u(A)

∂x
s1 +

∂u(A)

∂y
s2 +

∂u(A)

∂z
s3.
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The directional derivative of the scalar field u(x, y, z) in the point A along the vector s
determines the slope of the scalar field u(x, y, z) in the point A along the vector s, i.e. rate
of change of the scalar field u(x, y, z) in the point A in the direction of the vector s.

Definition

The vector function

grad u =
∂u(x, y, z)

∂x
i+

∂u(x, y, z)
∂y

j+
∂u(x, y, z)

∂z
k =

(
∂u(x, y, z)

∂x
,

∂u(x, y, z)
∂y

,
∂u(x, y, z)

∂z

)
is called the gradient of the scalar field u(x, y, z).

The direction of the greatest increase of the scalar field is given by gradient of the scalar
field.

• By implementation of the Hamilton operator (nabla operator)

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
we can write the gradient of the scalar field u(x, y, z) in the form

grad u = ∇u.

• The directional derivative of the scalar field u(x, y, z) in the point A along the unit
vector s can be written in the form

du(A)

ds
=

∂u(A)

∂x
s1 +

∂u(A)

∂y
s2 +

∂u(A)

∂z
s3 = grad u · s.

Theorem (Properties of the gradient)

1. Gradient of the scalar field u(x, y, z) is perpendicular to the contours of the scalar
field u(x, y, z) in each point A ∈ Ω.

2. Gradient of the scalar field u(x, y, z) points in the direction of the greatest increase
of the scalar field u(x, y, z). The opposite direction is the greatest rate of decrease
of the scalar field u(x, y, z).

3. The value of the greatest increase of the scalar field u(x, y, z) is equal to | grad u|.

Example 46

Find the directional derivative of the scalar field u = 3x2 − 4y3 + 2z4 in the point
A = [1, 2, 1] along the vector s = AB, while B = [4, 6, 6].

We need to find the values of the partial derivatives of the scalar field u in the point A.

∂u
∂x

= 6x,
∂u
∂y

= −12y2,
∂u
∂z

= 8z3,
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∂u(A)

∂x
= 6,

∂u(A)

∂y
= −48,

∂u(A)

∂z
= 8.

To find a unit vector s in the direction of the AB vector we need to calculate

AB = B− A = (3, 4, 5),

|AB| =
√

32 + 42 + 52 =
√

50 = 5
√

2,

s =
AB
|AB| =

(
3

5
√

2
,

4
5
√

2
,

5
5
√

2

)
=

(
3
√

2
10

,
2
√

2
5

,

√
2

2

)
.

By using formula for the directional derivative we obtain

du(A)

ds
= 6 · 3

√
2

10
− 48 · 2

√
2

2
+ 8 ·

√
2

2
= −67

5

√
2.

Example 47

Find the gradient of the scalar field u = x2 + y2 + z2− 2xy+ 2xz+ 2yz, the unit direction
s of the greatest rate of increase of the field in the point A = [1, 2, 1] and the greatest
value of directional derivative of the scalar field u in the point A.

We calculate the partial derivatives of the scalar field u(x, y, z).

∂u
∂x

= 2x− 2y + 2z,
∂u
∂y

= 2y− 2x + 2z,
∂u
∂z

= 2z + 2x + 2y.

Therefore the gradient vector is in the form

grad u = (2x− 2y + 2z, 2y− 2x + 2z, 2z + 2x + 2y).

Because the gradient always points to the direction of the greatest increase of the scalar
field u, we can calculate the unit vector s by

grad u(A) = (0, 4, 8),

| grad u(A)| =
√

80 = 4
√

5,

s =
grad u(A)

| grad u(A)| =
(

0,
4

4
√

5
,

8
4
√

5

)
=

(
0,

√
5

5
,

2
√

5
5

)
.

Now we are able to obtain the directional derivative
du(A)

ds
by

du(A)

ds
= grad u(A) · s = (0, 4, 8) ·

(
0,

√
5

5
,

2
√

5
5

)

= 0 +
4
√

5
5

+
16
√

5
5

= 4
√

5.

We can compare the results and confirm that for the direction of the greatest increase of the
scalar field u it holds

du(A)

ds
= | grad u(A)|.
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Exercise 48

Calculate directional derivative of scalar field u in the point A along the unit vector s:

a) u = 5x4 − 4xy + 2y− 7, A = [1, 1], s = −i,

b) u =
√

x2 + y2, A = [3, 4], s ‖ v = (4,−3).

Exercise 49

a) Find the points where gradient of the scalar field u = x2 + 2xy + 4y2 + z2 − 4z is
equal to zero.

b) Find the direction of the greatest rate of increase of the scalar field
u = x2 + y2 + z2 − 1 in the point A = [0,−2, 1].

3.3 Vector field

We often use vector fields to describe different physical phenomena. Vector field assigns
to each point X = [x, y, z] in the domain Ω the only vector f, whose components are real
functions P(x, y, z), Q(x, y, z), R(x, y, z).

Definition

Vector field on the domain Ω ⊂ R3 is given by a vector function

f(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k.

Definition

Let functions P(x, y, z), Q(x, y, z), R(x, y, z) be continuous on the domain Ω and
X = [x, y, z] ∈ Ω be an arbitrary point. The vector field f = (P(X), Q(X), R(X)) is said
to be conservative if and only if there exist a scalar field Φ on Ω such that

f =
(

∂Φ(X)

∂x
,

∂Φ(X)

∂y
,

∂Φ(X)

∂z

)
= grad Φ(x, y, z).

The scalar field Φ is called a scalar potential of a vector function f.

To describe a vector field we use lines of force, flow lines, etc. The vector field f(X) always
points in the direction of the tangent of such lines in each point X ∈ Ω. See figures where
you can find

• peripheral velocity of the rotational movement of the solid body
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• velocity of laminar flow of the fluid

Definition

Let vector field be given by vector function

f(X) = P(X) i + Q(X) j + R(X) k,

while functions P(X), Q(X), R(X) are continuous and have partial derivatives on Ω.

• Divergence of the vector field f(X) is defined as a scalar field

div f(X) = ∇ · f(X) =
∂P(X)

∂x
+

∂Q(X)

∂y
+

∂R(X)

∂z
.

• Vector field , where for all X ∈ Ω holds div f(X) = 0 is called solenoidal (divergen-
ce-free).

• Points X ∈ Ω, where div f(X) > 0 are called sources.

• Points X ∈ Ω, where div f(X) < 0 are called sinks.

• Curl of the vector field f(X) is defined as a vector field

curl f(X) = ∇× f(X) =

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
P(X) Q(X) R(X)

∣∣∣∣∣∣∣∣
=

(
∂R
∂y
− ∂Q

∂z
,

∂P
∂z
− ∂R

∂x
,

∂Q
∂x
− ∂P

∂y

)
.

• Vector field, where for all X ∈ Ω holds curl f(X) = 0 is called irrotational (curl-
free).

We can clarify the meaning of the divergence and the curl of vector field on the vector field
of velocity v(x, y, z) of stationary flow of the fluid. Divergence of the vector field v in point
A describes the volume of the fluid that flows out from unit of volume in unit of time in the
neighbourhood of point A, i.e. intensity of the source of unit volume. Curl of the vector
field v in point A defines the direction of the axis around which the fluid rotates in the
neighbourhood of point A.
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Theorem

Vector field f(X) = P(X) i + Q(X) j + R(X) k is conservative on Ω if and only if it is
irrotational on Ω, i.e. curl f(X) = o.

Example 50

Represent the vector field f(x, y) = (x− y) i + (x + y) j given on Ω : x2 + y2 ≤ 4.

To represent the vector field we can choose some points in the domain Ω and calculate
appropriate values of the vector field f.

A = [1, 1] : f(A) = 0 · i + 2 · j = (0, 2)
B = [2, 0] : f(B) = 2 · i + 2 · j = (2, 2)
C = [0, 2] : f(C) = −2 · i + 2 · j = (−2, 2)
D = [−2, 0] : f(D) = −2 · i− 2 · j = (−2,−2)
E = [0,−2] : f(E) = 2 · i− 2 · j = (2,−2)
F = [−1, 1] : f(F) = −2 · i + 0 · j = (−2, 0)

The representation of the vector field is visible on following figure.

Example 51

Find out if the vector field f(x, y, z) = x2i + y2j + z2k is

• solenoidal,

• irrotational.

• Find its scalar potential Φ if exists.

For the vector field f it holds

P = x2, Q = y2, R = z2,

∂P
∂x

= 2x,
∂P
∂y

= 2y,
∂P
∂z

= 2z.

• According to the definition of divergence we obtain

div f(x, y, z) = 2x + 2y + 2z,
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therefore the vector field is not solenoidal. Points, where 2x+ 2y+ 2z > 0 are sources,
while there are sinks in points where 2x + 2y + 2z < 0. For example the point
A = [1, 1, 1] is source because div f(A) = 6 > 0. The point B = [−1,−1,−1] is sink
because div f(B) = −6 < 0.

• Based on the definition of curl we calculate

curl f(X) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
x2 y2 z2

∣∣∣∣∣∣∣∣∣ =
(

∂
(
z2)

∂y
−

∂
(
y2)

∂z
,

∂
(
x2)

∂z
−

∂
(
z2)

∂x
,

∂
(
y2)

∂x
−

∂
(
x2)

∂y

)
= o.

Therefore, the given field is irrotational and it is also conservative.

• We use properties P =
∂Φ
∂x

, Q =
∂Φ
∂y

, R =
∂Φ
∂z

from the definition of the scalar

potential. Hence

Φ =
∫

P dx =
∫

x2 dx =
x3

3
+ K1(y, z),

where K1(y, z) is an arbitrary function depending on variables y, z. To find it we
derivate the scalar potential Φ with respect to y and realise that

∂K1(y, z)
∂y

= y2

from which we obtain

K1(y, z) =
∫

y2 dy =
y3

3
+ K2(z),

where K2(z) is an arbitrary function depending only on variable z, which must fulfil
K′2(z) = z2 based on the partial derivative of potential Φ with respect to z. Therefore

K2(z) =
∫

z2 dz =
z3

3
+ C,

where C is an arbitrary real constant. Finally, we obtained scalar potential in the form

Φ(X) =
x2 + y2 + z2

3
+ C.

Example 52

Vector field of the force F in each point X = [x, y, z] points to the coordinates origin and

its magnitude is equal to |F| = 1
ρ2 , where ρ is the distance between the point and the

coordinate origin. Find out if the field is conservative.

The force F has the same direction as the position vector r of an arbitrary point X,

r = OX = X−O = (x, y, z)
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but the opposite orientation. Therefore

F = (−cx,−cy,−cz),

where c > 0 is an arbitrary constant. The distance of the point X = [x, y, z] is equal to

ρ = |OX| =
√

x2 + y2 + z2.

The magnitude of the force is given and is equal to

|F| = 1
ρ2 =

1
x2 + y2 + z2

from which we obtain
c =

1√
(x2 + y2 + z2)

3
.

We have found the components of the force vector

F = − x√
(x2 + y2 + z2)

3
i− y√

(x2 + y2 + z2)
3

j− z√
(x2 + y2 + z2)

3
k.

According to the definition of the curl we calculate

curl F =

(
3yz
√

x2 + y2 + z2

(x2 + y2 + z2)
3 −

3yz
√

x2 + y2 + z2

(x2 + y2 + z2)
3

)
i

+

(
3xz
√

x2 + y2 + z2

(x2 + y2 + z2)
3 − 3xz

√
x2 + y2 + z2

(x2 + y2 + z2)
3

)
j

+

(
3xy

√
x2 + y2 + z2

(x2 + y2 + z2)
3 − 3xy

√
x2 + y2 + z2

(x2 + y2 + z2)
3

)
k = o.

The vector field is irrotational and therefore it is also conservative.
Exercise 53

Find the divergence and the curl of the vector field f.

a) f(x, y, z) = x2yz i + xy2z j + xyz2 k

b) f(x, y, z) = grad
(
x3 + y3 + z3)

Exercise 54

Find out if following vector field f is solenoidal, irrotational and conservative, find its
scalar potential Φ if exists:

a) f(x, y, z) = (y + z) i + (x + z) j + (x + y) k,

b) f(x, y, z) = grad(xyz).
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4 Line integral

4.1 The curve and its parametrization

Definition

Let x = x(t), y = y(t), z = z(t) be continuous functions for t ∈ [a, b] . The curve k with
parametrical equations

x = x(t),
y = y(t),
z = z(t), t ∈ [a, b]

is called positively oriented with respect to the parameter t, if and only if its points are
ordered so that for arbitrary values t1, t2 ∈ [a, b] , t1 < t2, the point
M1 = [x(t1), y(t1), z(t1)] lies before the point M2 = [x(t2), y(t2), z(t2)], i.e.

∀t1, t2 ∈ [a, b] : t1 < t2 ⇔ M1 ≺ M2.

Reversely,
∀t1, t2 ∈ [a, b] : t1 < t2 ⇔ M2 ≺ M1,

the curve is called negatively oriented with respect to the parameter t.

Remark

The symbol ≺means ”precedes” or ”lies before”.

Definition

If the curve k is positively oriented with respect to the parameter t ∈ [a, b] , then the
point A = [x(a), y(a), z(a)] is called the starting point of the curve and the point
B = [x(b), y(b), z(b)] is called the ending point of the curve.

Definition

Let curve k is given by parametrical equations

x = x(t),
y = y(t),
z = z(t), t ∈ [a, b]

with starting point A = [x(a), y(a), z(a)] and ending point B = [x(b), y(b), z(b)].

• The curve is called closed, if A ≡ B.

• The curve is called smooth on [a, b], if there exists continuous derivatives of para-
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metrical equations

ẋ = ẋ(t),
ẏ = ẏ(t),
ż = ż(t)

and ∀t ∈ [a, b] : (ẋ(t), ẏ(t), ż(t)) 6= (0, 0, 0).

• The curve is called piecewise smooth on [a, b], if it is smooth on [a, b] except for
a finite number of points ti ∈ [a, b] , i = 1, . . . , n.

• The curve is called simple on [a, b], if it doesn’t intersect itself, i.e.

∀t1, t2 ∈ (a, b) : t1 6= t2 ⇒ M1 6= M2.

Example 55

Write parametrization of the line segment AB, where A = [0, 0], B = [1, 1].

There are infinitely many possibilities how to write down a parametrization. For example:

1. If we consider the given segment as a part of graph of function y = x, we can put
t = x = y and obtain

x = t,
y = t, t ∈ [0, 1] .

The curve is positively oriented. For t = 0 we obtain A = [x(0), y(0)] = [0, 0] and
analogically for t = 1 we obtain B = [x(1), y(1)] = [1, 1].

2. It is not necessary to keep x = t. We can use parametrization

x = r− 1,
y = r− 1, r ∈ [1, 2] .

which is also positively oriented. We obtain A = [x(1), y(1)] = [0, 0] , while
B = [x(2), y(2)] = [1, 1].

3. If we use following parametrization

x = −s,
y = −s, s ∈ [−1, 0] .

The curve is then negatively oriented. In such situation B = [x(−1), y(−1)] = [1, 1] ,
while A = [x(0), y(0)] = [0, 0].

4.1.1 Parametrization of the line segment

Parametrizations of the line segment between points A = [a1, a2, a3], B = [b1, b2, b3] are
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in the form

x = a1 + u1 · t,
y = a2 + u2 · t,
z = a3 + u3 · t, t ∈ [0, 1] .

where u = AB = (u1, u2, u3) is the vector parallel to the line segment AB.

Example 56

Write parametrization of the line segment between points A = [1, 2, π] and B = [8,−3, 0].

We compute vector
AB = B− A = (7,−5,−π) .

The parametrical equations are

x = 1 + 7t,
y = 2− 5t,
z = π − πt, t ∈ [0, 1] .

4.1.2 Parametrization of the circle

Parametrical equations of the circle

(x−m)2 + (y− n)2 = r2, r > 0,

with the center in the point C = [m, n] and radius r are in the form

x = m + r cos t,
y = n + r sin t, t ∈ [0, 2π] .

Example 57

Compute parametrization of the circle with the center in the origin and radius r = 2 for
y ≥ 0. The starting point of the curve is A = [2, 0].

A
x−2 −1 1 2

y

1

2

0

The parametrical equations are

x = 2 cos t,
y = 2 sin t, t ∈ [0, π] .

The curve is positively oriented with respect to the parameter t.
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We can also express variable y from equation

x2 + y2 = 4

and obtain
y = ±

√
4− x2.

For y > 0 we consider only
y =

√
4− x2.

By putting s = x we then obtain parametrical equations of the given curve in the form

x = s,

y =
√

4− s2, s ∈ [−2, 2] .

The curve is negatively oriented with respect to parameter s.

4.1.3 Parametrization of the ellipse

Parametrical equations of the ellipse

(x−m)2

a2 +
(y− n)2

b2 = 1, a, b > 0,

with the center in the point [m, n] and semi-axis a, b are in the form

x = m + a cos t,
y = n + b sin t, t ∈ [0, 2π] .

Example 58

Compute parametrization of the curve 9x2 + 4y2 + 18x− 32y + 37 = 0.

We can find the center of the ellipse and sizes of the semi-axes by following calculation

9x2 + 4y2 + 18x− 32y + 37 = 0

9
(

x2 + 2x
)
+ 4

(
y2 − 8y

)
= −37

9
(

x2 + 2x + 1
)
− 9 + 4

(
y2 − 8y + 16

)
− 64 = −37

9(x + 1)2 + 4(y− 4)2 = 36
(x + 1)2

4
+

(y− 4)2

9
= 1

The center of the ellipse is in point C = [−1, 4] and semi-axis are a = 2, b = 3 and the
parametrical equations are

x = −1 + 2 cos t,
y = 4 + 3 sin t, t ∈ [0, 2π] .
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C

x−4 −3 −2 −1 1 2

y

2

3

5

6

7

1

4

0

4.2 Line integral of a scalar field

We need to divide our domain (the curve k) into small elements. Let us consider the simple
smooth curve k with parametrization

x = x(t),
y = y(t),
z = z(t), t ∈ [a, b]

positively oriented with respect to the parameter t. We divide interval [a, b] by sequence of
points

a = t0 < t1 < · · · < tn = b

into n partial curves k1, k2, . . . , kn according to the figure

x(a) x(b)

y(a)

y(b)

xi−1 xi

yi−1

yi

ki

A

B

Mi

x

y

For each i = 1, . . . , n we denote by ∆si the length of each element ki and we choose an
arbitrary point Mi = [x(ti), y(ti), z(ti)] in each element ki. The curve k lies within a domain
Ω and we consider a bounded continuous scalar function u(X) = u(x, y, z) defined for
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each X ∈ Ω. Now we can create the sum of products

n

∑
i=1

u(Mi) · ∆si =
n

∑
i=1

u(x(ti), y(ti), z(ti)) · ∆si

and define the line integral of a scalar field.

Definition

If there exists

lim
n

∑
i=1

u(x(ti), y(ti), z(ti)) · ∆si

for n → ∞ and ∆si → 0 we call it the line integral of a scalar field u(x, y, z) along the
curve k and denote it ∫

k

u(x, y, z)ds.

Theorem (Properties of the line integral of a scalar field)

1.
∫
k

c u(X)ds = c
∫
k

u(X)ds,

2.
∫
k

(u(X) + v(X))ds =
∫
k

u(X)ds +
∫
k

v(X)ds,

3.
∫
k

u(X)ds =
∫
k1

u(X)ds +
∫
k2

u(X)ds,

where c ∈ R, k1, k2 are non-overlapping curves such that curve k fulfils k = k1 ∪ k2
and u(X), v(X) are bounded continuous scalar functions for all X ∈ Ω that contains the
curve k.

Remark

The line integral of the scalar field doesn’t depend on the orientation of the curve, be-
cause the lengths of all components ∆si are always positive.

The element of the curve ds in the three-dimensional space is the body diagonal of the
rectangular hexahedron with sides dx, dy, dz. Therefore we obtain

ds =
√
(dx)2 + (dy)2 + (dz)2 =

√
(ẋ(t)dt)2 + (ẏ(t)dt)2 + (ż(t)dt)2

=
√
(ẋ(t))2 + (ẏ(t))2 + (ż(t))2 dt.
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The line integral of the scalar field can then be written in the form

∫
k

u(x, y, z)ds =
b∫

a

u(x(t), y(t), z(t))
√
(ẋ(t))2 + (ẏ(t))2 + (ż(t))2 dt.

Example 59

Calculate the line integral
∫
k

(x + z)ds along the line segment between points

A = [1, 2, 3], B = [3, 2, 1].

We create the parametrization of the line segment

x = 1 + 2t,
y = 2,
z = 3− 2t, t ∈ [0, 1]

and calculate its derivatives

ẋ = 2, ẏ = 0, ż = −2.

We express the element ds

ds =
√
(ẋ(t))2 + (ẏ(t))2 + (ż(t))2 dt =

√
8 dt = 2

√
2 dt

to calculate the line integral

∫
k

(x + z)ds =
1∫

0

(1 + 2t + 3− 2t) · 2
√

2 dt = 8
√

2
1∫

0

dt = 8
√

2.

If we consider just the two-dimensional problem, i.e. the curve is in xy-plane, the ele-
ment

ds =
√
(ẋ(t))2 + (ẏ(t))2 dt

and the line integral of the scalar field is then in the form

∫
k

u(x, y) ds =
b∫

a

u(x(t), y(t))
√
(ẋ(t))2 + (ẏ(t))2 dt.

Example 60

Calculate the line integral
∫
k

y2 ds, where k is a circle with the center in the origin of

coordinates and radius 2.
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The parametrical equations of the circle are

x = 2 cos t,
y = 2 sin t, t ∈ [0, 2π] .

We calculate derivatives

ẋ = −2 sin t,
ẏ = 2 cos t

and the element of the curve

ds =
√
(ẋ(t))2 + (ẏ(t))2 dt =

√
4 sin2 t + 4 cos2 t dt =

√
4 dt = 2 dt.

We are able to calculate the integral

∫
k

y2 ds =
2π∫
0

4 sin2 t · 2 dt = 8
2π∫
0

1
2
(1− cos(2t)) dt

= 4
[

t− 1
2

sin(2t)
]2π

0
= 8π.

Example 61

Calculate the line integral
∫
k

y ds, where k is a part of the function y = x3 between points

A = [0, 0], B = [1, 1].

Parametrical equations of function y = x3, x ∈ [0, 1] are

x = t,
y = t3, t ∈ [0, 1] .

We need to express a derivative of parametrical equations

x = 1,
y = 3t2

an element of the curve

ds =
√

1 + (3t2)
2 dt =

√
1 + 9t4 dt

to calculate the integral ∫
k

y ds =
1∫

0

t3
√

1 + 9t4 dt.

In such integral we can use substitution

1 + 9t4 = z
36t3 dt = dz

to obtain ∫
k

y ds =
1

36

10∫
1

√
z dz =

1
36
· 2

3

[√
z3
]10

1
=

1
54

(
10
√

10− 1
)

.
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Exercise 62

Compute the line integrals of scalar fields along given curves.

a)
∫
k

z2

x2 + y2 ds, k is one thread of the spiral x = cos t, y = sin t, z = t, t ∈ [0, 2π]

b)
∫
k

x ds, k is a line segment between points A = [0, 0], B = [1, 2]

c)
∫
k

x2 ds, k is an upper half of the circle x2 + y2 = a2, a > 0

d)
∫
k

x2 ds, k : y = ln x, x ∈ [1, 3]

4.2.1 Practical applications of line integral of the scalar field

Area of a cylindrical region

Let function f (x, y) ≥ 0 be continuous on a domain Ω that contains the curve k. We
consider the cylindrical surface between the plane z = 0 and z = f (x, y) above the
curve k, see figure. The area of such a surface is

A =
∫
k

f (x, y)ds.

Example 63

Calculate the area of the cylindrical surface x2 + y2 = r2 bounded by z ≥ 0 and z ≤ x.

The curve k is a part of the circle x2 + y2 = r2 for x ≥ 0. Therefore, the parametrization of
the curve k is in the form

x = r cos t,

y = r sin t, t ∈
[
−π

2
,

π

2

]
.
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We express derivatives of the parametric equations

ẋ = −r sin t,
ẏ = r cos t

and the element of the curve is then given by

ds =
√
(ẋ(t))2 + (ẏ(t))2 dt =

√
r2 sin2 t + r2 cos2 t dt = r dt.

Now we can calculate the area of given cylindrical surface

A =
∫
k

x ds =
π/2∫
−π/2

r cos t · r dt = r2[sin t]π/2
−π/2 = 2r2.

Exercise 64

Calculate the area of cylindrical surfaces bounded by given conditions:

a) x2 + y2 = r2, z ≥ 0, z ≤ xy
2r

, x ≥ 0, y ≥ 0,

b) 9y2 = 4(x− 1)3, z ≥ 0, z ≤ 2−
√

x,

c) y2 = 2x, z ≥ 0, z ≤
√

2x− 4x2,

d) y =
3
8

x2, z ≥ 0, z ≤ x, x ≥ 0, y ≤ 6.

Length of a curve

Let k be simple, piecewise smooth curve. The length of the curve is numerically equal
to the area of the cylindrical surface above the curve k that is bounded by planes z = 0
and z = 1. Hence, by letting f (x, y) = 1 in formula for area of a cylindrical region

A =
∫
k

f (x, y)ds we obtain

L =
∫
k

ds.

Remark

The length of the curve k in three dimensional space can be calculated using the same
formula

L =
∫
k

ds.

Example 65

Calculate the length of one period of the cycloid x = a(t − sin t), y = a(1 − cos t),
t ∈ [0, 2π], a > 0.
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We need to calculate the derivatives of the parametric equations of the cycloid

ẋ = a(1− cos t),
ẏ = a sin t.

Further, we use them to express the element of the curve

ds =
√
(ẋ(t))2 + (ẏ(t))2 dt =

√
a2(1− cos t)2 + a2 sin2 t dt

= a
√

1− 2 cos t + cos2 t + sin2 t dt = a
√

2− 2 cos t dt =
√

2a
√

1− cos t dt.

Now, we need to use trigonometric identity sin2 x =
1
2
(1− cos 2x) and obtain

ds =
√

2a

√
2 sin2 t

2
dt = 2a sin

t
2

dt.

Finally, we are able to calculate the length of the curve

L =
∫
k

ds =
2π∫
0

2a sin
t
2

dt = 2a
[
−2 cos

t
2

]2π

0
= −4a · (−1− 1) = 8a.

Exercise 66

Calculate the lengths of the given curves.

a) cardioid with parametrical equations x = 2a cos t− a cos 2t,y = 2a sin t− a sin 2t,
t ∈ [0, 2π], a > 0

b) y =
1
2

ln x, z =
1
2

x2, x ∈ [1, 2]

c) y = 1− ln cos x, x ∈
[
0,

π

4

]
d) y =

1
2

x2, z =
1
6

x3, x ∈ [0, 1]

Mass of a curve

Let k be a simple, piecewise smooth curve and continuous function ρ(x, y, z) > 0 be its
linear density. The mass of a curve (e.g. mass of a wire) is given by the line integral of a
scalar field

m =
∫
k

ρ(x, y, z)ds.

Example 67

Calculate the mass of one thread of the screw line k : x = cos t, y = sin t, z = t, t ∈ [0, 2π]
if its density is given by ρ = x2 + y2 + z2.
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Derivatives of the parametric equations are in the form

ẋ = − sin t,
ẏ = cos t,
ż = 1.

We express element of the curve

ds =
√
(ẋ(t))2 + (ẏ(t))2 + (ż(t))2 dt =

√
sin2 t + cos2 t + 12 dt =

√
2 dt.

Now we can use the line integral and calculate the mass of the given curve

m =
∫
k

(
x2 + y2 + z2

)
ds =

√
2

2π∫
0

(
cos2 t + sin2 t + t2

)
dt =

√
2

2π∫
0

(
t2 + 1

)
dt

=
√

2
[

t3

3
+ t
]2π

0
=
√

2
(

8π3

3
+ 2π

)
= 2
√

2π

(
4
3

π3 + 1
)

.

Exercise 68

a) Calculate the mass of one quarter of the circle x = a sin t, y = a cos t, t ∈
[
0,

π

2

]
if

the density in each point is equal to its y-coordinate.

b) Calculate the mass of the parabola y =
1
2

x2 between the points A =

[
1,

1
2

]
and

B = [2, 2]. The density ρ =
y
x

.

c) Calculate the mass of the curve y = ln x, where x ∈ [1, 2]. The density at each point
is equal to the square of its x-coordinate.

d) Calculate the mass of the catenary y =
a
2

(
e

x
a + e−

x
a

)
for x ∈ [0, a], a > 0. The

density ρ =
a
y

.

4.3 Line integral of a vector field

Let us consider the simple smooth curve k with parametrization

x = x(t),
y = y(t),
z = z(t), t ∈ [a, b]

that is positively oriented with respect to the parameter t. The curve lies within the domain
Ω.
We divide interval [a, b] by sequence of points

a = t0 < t1 < · · · < tn = b
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into n partial curves k1, k2, . . . , kn. We are also able to construct positively oriented unitary
tangential vector τi(Mi) at each point Mi according to the figure.

B

x(a) x(b)xi−1 xi

τi
A Mi

x

y

Furthermore, we consider bounded continuous vector field

F(X) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k

defined for each X ∈ Ω. We create scalar products of the vector field and the positively
oriented tangential vector of each element of the curve F(Mi) · ∆si, where ∆si = ∆siτi.
Now we can create sum of such products

n

∑
i=1

F(Mi) · ∆si =
n

∑
i=1

F(x(ti), y(ti), z(ti)) · ∆siτi

and define the line integral of a vector field.

Definition

If there exists

lim
n

∑
i=1

F(x(ti), y(ti), z(ti)) · ∆siτi

for n → ∞ and ∆si → 0, we call it the line integral of a vector field F(x, y, z) along the
curve k+ and denote it ∫

k+

F(x, y, z) · ds,

where k+ denotes curve k positively oriented with respect to parameter t. While k−
would denote curve k negatively oriented with respect to parameter t.

Remark

The line integral of the vector field depends on the orientation of the curve k, because
coordinates of the unitary tangential vectors τi depend on the orientation of the curve.

To derive the form of the line integral of the vector field, we need to express the inner
product
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F(x, y, z) · ds = (P(x, y, z), Q(x, y, z), R(x, y, z)) · (dx, dy, dz)

= P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz

and the differentials dx = ẋ(t) dt, dy = ẏ(t) dt, dz = ż(t) dt by using parametrization
of the curve.

The line integral of the vector field then can be written in the form

∫
k

F(x, y, z) · ds = ε

b∫
a

[P(x(t), y(t), z(t))ẋ(t) + Q(x(t), y(t), z(t))ẏ(t)

+R(x(t), y(t), z(t))ż(t)] dt,

where ε = 1 in case of positively oriented curve k with respect to the parameter t, while
ε = −1 in case of negatively oriented curve k.

This way we transform the line integral of the vector field into the one-dimensional definite
integral, similarly to the case of the line integral of a scalar field.

Theorem (Properties of the line integral of a vector field)

1.
∫
k

c F(X) · ds = c
∫
k

F(X) · ds,

2.
∫
k

(F(X) + G(X)) · ds =
∫
k

F(X) · ds +
∫
k

G(X) · ds,

3.
∫
k

F(X) · ds =
∫
k1

F(X) · ds +
∫
k2

F(X) · ds,

4.
∫
k+

F(X) · ds = −
∫
k−

F(X) · ds.

where c ∈ R, k1, k2 are non-overlapping curves such that curve k fulfils k = k1 ∪ k2 (con-
sidering the same orientation of these curves) and F(X), G(X) are bounded continuous
vector functions for all X ∈ Ω that contains the curve k.

Example 69

Calculate the line integral of the vector field F = (x, y, z) along the curve k, that is one
thread of the spiral x = 2 cos t, y = 2 sin t, z = 3t, t ∈ [0, 2π] . The curve is positively
oriented with respect to the parameter t.

We express derivatives of parametrization equations

ẋ = −2 sin t
ẏ = 2 cos t
ż = 3
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and we can calculate the integral∫
k

F(x, y, z) · ds =
∫
k

x dx + y dy + z dz

=

2π∫
0

[2 cos t · (−2 sin t) + 2 sin t · 2 cos t + 3t · 3]dt

=

2π∫
0

[−4 sin t cos t + 4 sin t cos t + 9t]dt =
2π∫
0

9t dt =
9
2

[
t2
]2π

0
= 18π2.

If we consider the two-dimensional problem, i.e. the curve is in
xy-plane, the vector field F = (P(x, y), Q(x, y)) and the tangential vector of the element

ds = (dx, dy) = (ẋ(t)dt, ẏ(t)dt),

the line integral of the vector field is then in the form

∫
k

F(x, y) · ds = ε

b∫
a

[P(x(t), y(t))ẋ(t) + Q(x(t), y(t))ẏ(t)]dt.

Example 70

Calculate the line integral
∫
k

(x + y)dx + (x− y)dy, where

k : y =
1
x

, x ∈ [2, 3] . The starting point of the curve k is A =

[
2,

1
2

]
.

Parametrical equations of the curve k are

x = t,

y =
1
t

, t ∈ [2, 3] .

The curve is positively oriented with respect to the parameter t. We calculate the deriva-
tives

ẋ = 1,

ẏ = − 1
t2

and the integral

∫
k

(x + y)dx + (x− y)dy =

3∫
2

[(
t +

1
t

)
+

(
t− 1

t

)
·
(
− 1

t2

)]
dt
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=

3∫
2

[
t +

1
t
− 1

t
+

1
t3

]
dt =

3∫
2

(
t +

1
t3

)
dt =

[
t2

2
− 1

2t2

]3

2

=
9
2
− 1

18
− 2 +

1
8
=

185
72

.

Exercise 71

Compute the line integrals of vector fields along given curves.

a)
∫
k

x dx− y dy + z dz, k is an oriented line segment AB : A = [1, 1, 1], B = [4, 3, 2]

b)
∫
k

y dx + x dy, k is one quarter of the circle x = a cos t, y = a sin t, a > 0,

t ∈
[
0,

π

2

]
with starting point A [a, 0]

c)
∫
k

(xy− 1) dx + x2y dy, k is an arc of the ellipse x = cos t, y = 2 sin t from the

starting point A = [1, 0] to the end point B = [0, 2]

d)
∫
k

xy dx + (y− x) dy, k is a part of the parabola y2 = x from the starting point

A = [0, 0] to the end point B = [1, 1]

4.3.1 Green’s theorem

Green’s theorem expresses the relation between a line integral of a vector field along a plane
(two-dimensional) closed curve and a double integral.

Definition

Let Ω be a domain in a plane bounded by a simple closed curve k. The curve k is orien-
tated positively if traveling on the curve we always have got the domain Ω on the left
side, see figure.

69



4 LINE INTEGRAL

Remark

Positive orientation of the closed curve means traveling in a counterclockwise direction,
while negative orientation means traveling in a clockwise direction.

We denote the line integral of a vector field F(X) along a closed curve k by∮
k

F(X) · ds.

Theorem (Green’s theorem)

Let two-dimensional vector field

F(x, y) = P(x, y)i + Q(x, y)j

have continuous partial derivatives on the plane domain Ω, which is bounded by simple
piecewise smooth closed positively orientated curve k. Then∮

k

P(x, y)dx + Q(x, y)dy =
∫∫
Ω

[
∂Q(x, y)

∂x
− ∂P(x, y)

∂y

]
dx dy.

The Green’s theorem transforms the line integral of a vector field along a plane closed curve
to a double integral over the domain Ω, that is bounded by the curve k. It is especially
useful in situations when k is a polygon and we would have to calculate as many line
integrals as the lines the polygon consists of.

Example 72

Calculate the integral
∮
k

(2xy− 5y)dx+
(

x2 + y
)

dy, where k is the positively orientated

circle with the center in the origin of coordinates and radius r.

The curve k is simple and closed. Also both functions P(x, y) = 2xy− 5y and
Q(x, y) = x2 + y fulfil assumptions of the Green’s theorem. We calculate derivatives

∂P(x, y)
∂y

= 2x− 5

∂Q(x, y)
∂x

= 2x

and evaluate the integral by using Green’s theorem.∮
k

(2xy− 5y) dx + (x2 + y) dy =
∫∫
Ω

(2x− (2x− 5)) dx dy =
∫∫
Ω

5 dx dy = 5πr2.
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Example 73

Calculate the integral
∮
k

(
x2 + y2

)
dx + (x + y)2 dy, where k consists of the sides of the

triangle ABC: A = [1, 1], B = [1, 3], C = [3, 3]. The curve is positively orientated.

All assumptions of the Green’s theorem are fulfilled.

P = x2 + y2, Q = (x + y)2,
∂P(x, y)

∂y
= 2y,

∂Q(x, y)
∂x

= 2(x + y).

The domain is shown on following figure.

We calculate the double integral as a normal one with respect to the x-axis with inequalities
for Ω in the form

Ω : 1 ≤ x ≤ 3,
x ≤ y ≤ 3.

By using Green’s theorem we obtain

∮
k

(
x2 + y2

)
dx + (x + y)2 dy =

∫∫
Ω

(2x + 2y− 2y)dx dy = 2
3∫

1

dx
3∫

x

x dy

= 2
3∫

1

x[y]3x dx = 2
3∫

1

(
3x− x2

)
dx = 2

[
3
2

x2 − x3

3

]3

1
=

20
3

.

Exercise 74

Calculate the line integrals of vector fields along given curves using Green’s theorem.

a)
∮
k

(
x2 + y2

)
dy, k consists of the sides of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 4.

The curve is positively orientated.
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b)
∮
k

2y dx− (x + y)dy, k consists of the sides of the triangle x ≥ 0, y ≥ 0,

x + 2y ≤ 4. The curve is positively orientated.

c)
∮
k

(x + y)dx− (x− y)dy, k is positively orientated ellipse 4x2 + 9y2 = 36.

d)
∮
k

(ex sin y− 16y) dx + (ex cos y + 16) dy k is positively orientated circle

x2 + y2 = 2x.

4.3.2 Path independence of line integral

We can use another method of calculation of the line integral of a vector field in situations
when the value of the integral doesn’t depend on an integration curve and depends only
on its starting and ending point.

Definition

Let points A, B ∈ Ω. Let the vector function F(X) be continuous over the domain Ω. If
the value of the line integral of the vector field∫

k

F(X) · ds

doesn’t depend on the integration curve k with starting point A and ending point B that
lies within the domain Ω, we say the integral is path independent between points A, B.
If this property is fulfilled for arbitrary points A, B ∈ Ω, we say integral is path inde-
pendent over Ω.

Theorem (Path independence of line integral)

Let F(X) = P(X)i + Q(X)j + R(X)k have continuous partial derivatives in a domain
Ω. Let a curve k lie within Ω, A be the starting point of the curve k, while B be its ending
point. Then:

1. The line integral
∫
k

F(X) · ds =
∫
k

P(X)dx + Q(X)dy + R(X)dz is path indepen-

dent over Ω if and only if there exists some scalar function Φ(x, y, z) over Ω such
that F(x, y, z) = grad Φ(x, y, z), i.e.

P =
∂Φ
∂x

, Q =
∂Φ
∂y

, R =
∂Φ
∂z

.

The vector field F(x, y, z) is a conservative field, function Φ(x, y, z) is a scalar po-
tential.

2. The line integral
∫
k

F(X) · ds =
∫
k

P(X)dx + Q(X)dy + R(X)dz is path indepen-
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dent over Ω if and only if curl F(X) = o, i.e.

∂Q
∂x

=
∂P
∂y

,
∂R
∂y

=
∂Q
∂z

,
∂P
∂z

=
∂R
∂x

.

3. In such case, the line integral of the vector field F(X) along a curve k from the
starting point A to the ending point B is given by the difference of the values of
scalar potential in the end point B and starting point A :∫

k

F(X) · ds =
∫
k

P(X)dx + Q(X)dy + R(X)dz = Φ(B)−Φ(A).

4. Hence, if the line integral is path independent and the curve k is closed then∮
k

F(X) · ds = 0.

If the problem is considered only in xy-plane, the path independent line integral of the
vector field is given by∫

k

F(X) · ds =
∫
k

P(x, y)dx + Q(x, y)dy = Φ(B)−Φ(A).

Two-dimensional vector field is conservative if and only if

∂P
∂y

=
∂Q
∂x

.

We will show the way of calculation of the scalar potential Φ(x, y) at following examples.

Example 75

Calculate the integral
∫
k

(
3x2 − 2xy + y2

)
dx −

(
x2 − 2xy + 3y2

)
dy, where k is ori-

ented line segment AB, A = [1, 2], B = [3, 1].

The test condition
∂P
∂y

= −2x + 2y =
∂Q
∂x

is fulfilled.

To find the potential we first integrate P(x, y) = 3x2 − 2xy + y2 with respect to x.

Φ(x, y) =
∫

P(x, y)dx =
∫ (

3x2 − 2xy + y2
)

dx = x3 − x2y + xy2 + K(y),

where K(y) is a function of variable y. We determine it by setting the partial derivative
∂Φ
∂y

equal to Q(x, y). We have

∂Φ
∂y

= −x2 + 2xy + K′(y) = −x2 + 2xy− 3y2 = Q(x, y).
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Hence, K′(y) = −3y2 and

K(y) = −
∫

3y2 dy = −y3 + C,

where C is a real constant. The scalar potential is in the form

Φ(x, y) = x3 − x2y + xy2 − y3 + C.

We calculate the integral according to path independence theorem:

Φ(B) = 33 − 32 · 1 + 3 · 12 − 13 = 20, Φ(A) = 13 − 12 · 2 + 1 · 22 − 23 = −5,∫
k

(
3x2 − 2xy + y2

)
dx−

(
x2 − 2xy + 3y2

)
dy = Φ(B)−Φ(A) = 25.

Example 76

Calculate the integral
∮
k

x2 dx + y2 dy along the positively orientated closed curve

k : x2 + y2 = r2.

Functions P = x2 and Q = y2 fulfil assumptions of path independence theorem. Partial
derivatives

∂P
∂y

=
∂Q
∂x

= 0.

Hence, the integral is path independent. The curve is closed. Therefore, the integral must
be equal to zero. ∮

k

x2 dx + y2 dy = 0

Example 77

Calculate the integral
∫
k

(2x + yz)dx +
(

xz + z2
)

dy + (xy + 2yz)dz from the starting

point A = [1, 1, 1] to the ending point B = [1, 2, 3].

We determine functions P, Q, R and all needed partial derivatives:

P(x, y, z) = 2x + yz,
∂P(x, y, z)

∂y
= z,

∂P(x, y, z)
∂z

= y,

Q(x, y, z) = xz + z2,
∂Q(x, y, z)

∂x
= z,

∂Q(x, y, z)
∂z

= x + 2z,

R(x, y, z) = xy + 2yz,
∂R(x, y, z)

∂x
= y,

∂R(x, y, z)
∂y

= x + 2z.

We can see that the test conditions are fulfilled

∂Q
∂x

=
∂P
∂y

,
∂R
∂y

=
∂Q
∂z

,
∂P
∂z

=
∂R
∂x

.
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Hence, curl F = o and integral is path independent.
To find the scalar potential Φ we use its properties from the definition of the scalar potential

P =
∂Φ
∂x

, Q =
∂Φ
∂y

, R =
∂Φ
∂z

.

Hence,
Φ =

∫
P dx =

∫
(2x + yz)dx = x2 + xyz + K1(y, z),

where K1(y, z) is an arbitrary function depending on variables y, z. We determine it by

setting the partial derivative
∂Φ
∂y

equal to Q. We obtain

∂Φ
∂y

= xz +
∂K1(y, z)

∂y
= xz + z2 = Q

and
K1(y, z) =

∫
z2dy = yz2 + K2(z),

where K2(z) is an arbitrary function depending only on variable z. We have

Φ = x2 + xyz + yz2 + K2(z).

We use equation
∂Φ
∂z

= R and we obtain

xy + 2yz + K′2(z) = xy + 2yz.

Integrating this equation we get

K2(z) =
∫

0 dz = C,

where C is an arbitrary real constant. Finally, we obtained scalar potential in the form

Φ(X) = x2 + xyz + yz2 + C.

We calculate the integral according to path independence theorem:

Φ(B) = 12 + 1 · 2 · 3 + 2 · 32 = 25, Φ(A) = 12 + 1 · 1 · 1 + 1 · 12 = 3,∫
k

(2x + yz)dx +
(

xz + z2
)

dy + (xy + 2yz)dz = Φ(B)−Φ(A) = 22.

Exercise 78

Prove that following integrals are path independent. Then, calculate them if A is the
starting point and B is the ending point.

a)
∫
k

x dx + y dy
x2 + y2 , A = [1, 2], B = [2, 3]

b)
∫
k

(
2y− 6xy3

)
dx +

(
2x− 9x2y2

)
dy, A = [1, 1], B = [4, 1]

c)
∫
k

yz dx + xz dy + xy dz, A = [2, 2, 2], B = [2, 3, 4]
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d)
∫
k

dx + 2 dy + 3 dz
x + 2y + 3z

, A = [0, 1, 0], B = [1, 0, 1]

4.3.3 Practical applications of line integral of the vector field

Work in a force field

Suppose an object moving in a force field F along a curve k. Work done by the force F is
then given by the line integral of a vector field

W =
∫
k

F · ds.

Example 79

Calculate the work done by the force field F = (xy, x + y) on an object moving along the
line segment AB from the point A = [0, 0] to the point B = [1, 1].

We describe the line segment by parametrization

x = t,
y = t, t ∈ [0, 1]

The curve is positively oriented with respect to the parameter t. We calculate the deriva-
tives ẋ = 1, ẏ = 1 and calculate the work by using line integral of a vector field

W =
∫
k

F · ds =
∫
k

xy dx + (x + y)dy

=

1∫
0

(
t2 + 2t

)
dt =

[
t3

3
+ t2

]1

0
=

1
3
+ 1 =

4
3

.

Exercise 80

a) Calculate the work done by the force field F = (xy, x + y) on an object moving
along the curve k : x = y2 from the point A = [0, 0] to the point B = [1, 1].

b) Calculate the work done by the force field F = (x + y, 2x) on an object moving
along the closed curve k : x2 + y2 = r2 in a positive direction.

c) Calculate the work done by the force field F =
(

x2, y2, z2
)

on an object moving

around the screw line k : x = cos t, y = sin t, z = t, t ∈
[
0,

π

2

]
in positive direction

with respect to the parameter t.

d) Calculate the work done by the force field F = grad(Φ),
Φ = ln

(
x2 + y2

)
− arctan

x
y

on an object moving from the point A = [1, 1] to the

point B =
[√

2,
√

2
]

.
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