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5 – Double integral over rectangular domain Řy

As the definite integral of a continuous positive function of one variable
represents the area of the region between the graph and the x-axis, the
double integral of a continuous positive function of two variables repre-
sents the volume of the region between the surface defined by the function
z = f (x, y) and the xy-plane which contains its domain. We start with rect-
angular domain

D =
{
[x, y] ∈ R2 : x ∈ [a, b] , y ∈ [c, d]

}
on the xy-plane according to figure.
We divide interval [a, b], resp. [c, d] by sequences of points

a = x0 < x1 < x2 < . . . < xm = b,

resp.
c = y0 < y1 < y2 < . . . < yn = d

to intervals [xi−1, xi] , i = 1, 2, . . . , m, resp.
[
yj−1, yj

]
, j = 1, 2, . . . , n. We

denote sizes of each component ∆xi = xi − xi−1, ∆yj = yj − yj−1.
This way is the whole rectangular domain divided into m · n small rect-
angles with area ∆Dij = ∆xi · ∆yj. Now we can choose an arbitrary point
[ξi, ηj] in each rectangle Dij and we can evaluate the volume of a prism
with basis Dij and height z = f (ξi, ηj). The sum of the volumes

m

∑
i=1

n

∑
j=1

f (ξi, ηj) · ∆xi · ∆yj

represents the volume of the body consisted of such prisms over all rect-
angles Dij if f (x, y) ≥ 0 on D.

Definition

If there exists

lim
m

∑
i=1

n

∑
j=1

f (ξi, ηj)∆xi∆yj

for m→ ∞, n→ ∞, ∆xi → 0, ∆yj → 0 for all i = 1, 2, . . . , m,
j = 1, 2, . . . , n, we call it the double integral of a function f (x, y) over
the rectangular domain D and denote it∫∫

D

f (x, y)dx dy.
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6 – Double integral over rectangular domain Řy

Theorem (Fubini’s theorem)

Let D =
{
[x, y] ∈ R2 : x ∈ [a, b] , y ∈ [c, d]

}
. If function f (x, y) is con-

tinuous on rectangle D, then

∫∫
D

f (x, y)dx dy =

b∫
a

 d∫
c

f (x, y)dy

 dx =

d∫
c

 b∫
a

f (x, y)dx

 dy.

In fact there are two ways of computing the double integral. If the inner
differential is dy then the limits of the inner integral must have y limits of
integration and outer integral must have x limits of integration. We calcu-

late the integral
d∫

c

f (x, y) dy by holding x constant and integrating with

respect to y as if this were a single integral (similar approach is used for
partial derivatives of function of more than one variable). This will result
as a function of a single variable x which can be integrated once again. We
use similar approach for the second way of computing the double inte-
gral.

We usually write

b∫
a

 d∫
c

f (x, y)dy

 dx =

b∫
a

dx
d∫

c

f (x, y)dy

and
d∫

c

 b∫
a

f (x, y)dx

 dy =

d∫
c

dy
b∫

a

f (x, y)dx.
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7 – Double integral over rectangular domain Řy

Theorem (Properties of the double integral over a rectangular domain)

1.
∫∫
D

c f (x, y)dx dy = c
∫∫
D

f (x, y)dx dy,

2.
∫∫
D

( f (x, y) + g(x, y))dx dy =
∫∫
D

f (x, y)dx dy +
∫∫
D

g(x, y)dx dy,

3.
∫∫
D

f (x, y)dx dy =
∫∫
D1

f (x, y)dx dy +
∫∫
D2

f (x, y)dx dy,

where f , g are continuous functions on D, c ∈ R and D1, D2 are non-overlapping rectangles that fulfil
D = D1 ∪ D2.
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8 – Double integral over rectangular domain Řy

Example

Compute I =
∫∫
D

(2xy + 4x)dx dy over the domain D : 0 ≤ x ≤ 2,

−1 ≤ y ≤ 3.

We will show both ways of the computing
a) by integrating the inner integral with respect to variable x

I =
∫∫
D

(2xy + 4x)dx dy =

3∫
−1

 2∫
0

(2xy + 4x)dx

 dy

=

3∫
−1

[
x2y + 2x2

]2

0
dy =

3∫
−1

(4y + 8)dy =
[
2y2 + 8y

]3

−1
= 48

b) by integrating the inner integral with respect to variable y

I =
2∫

0

 3∫
−1

(2xy + 4x)dy

 dx =

2∫
0

[
xy2 + 4xy

]3

−1
dx

=

2∫
0

((9x + 12x)− (x− 4x))dx =

2∫
0

24x dx =
[
12x2

]2

0
= 48

If the integrand f (x, y) can be written as a multiplication of two func-
tions of one variable f (x, y) = f1(x) · f2(y), then it holds:

∫∫
D

f (x, y)dx dy =

b∫
a

f1(x)dx ·
d∫

c

f2(y)dy.

Compute the integral by using decomposition on two functions of one
variable.

I =
∫∫
D

2x(y + 2)dx dy =

2∫
0

2x dx ·
3∫
−1

(y + 2)dy

=
[

x2
]2

0
·
[

y2

2
+ 2y

]3

−1
= 4 ·

[(
9
2
+ 6
)
−
(

1
2
− 2
)]

= 48

Remark

If the decomposition is not possible, we can always use Fubini’s theo-
rem.
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9 – Double integral over rectangular domain Řy

Example

Compute I =
∫∫
D

x
√

x2 + y dx dy over the domain D : 0 ≤ x ≤ 1, 0 ≤ y ≤ 3.

I =
3∫

0

dy
1∫

0

x
√

x2 + y dx =

∣∣∣∣ t = x2 + y 0→ y
dt = 2x dx 1→ y + 1

∣∣∣∣ = 1
2

3∫
0

dy

y+1∫
y

√
t dt =

1
2

3∫
0

[
2
3

√
t3
]y+1

y
dy

=
1
3

3∫
0

(√
(y + 1)3 −

√
y3
)

dy =
1
3

[
2
5

√
(y + 1)5 − 2

5

√
y5
]3

0
=

2
15

(
32− 9

√
3− 1

)
=

2
15

(
31− 9

√
3
)

.
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10 – Double integral over rectangular domain Řy

Example

Compute I =
∫∫
D

(
2x2y + y3

)
cos x dx dy over the domain D : 0 ≤ x ≤ π

2
, −1 ≤ y ≤ 1.

Remark

Although generally the order of integration doesn’t matter, in some cases the integral can be easily solved by
using one way of integration while it can be rather complicated using the other way. Everything depends on
the integrand f (x, y) itself and on the limits of integration.

a) First we integrate the inner integral with respect to variable x

I =
∫ 1

−1
dy
∫ π

2

0

(
2x2y + y3

)
cos x dx =

∣∣∣∣ u = 2x2y + y3 v′ = cos x
u′ = 4xy v = sin x

∣∣∣∣
=
∫ 1

−1

([(
2x2y + y3

)
sin x

] π
2

0
−
∫ π

2

0
4xy sin x dx

)
dy =

∣∣∣∣ u = 4xy v′ = sin x
u′ = 4y v = − cos x

∣∣∣∣
=
∫ 1

−1

(
π2

2
y + y3 − [−4xy cos x]

π
2
0 +

∫ π
2

0
−4y cos x dx

)
dy =

∫ 1

−1

(
π2

2
y + y3 − 4y [sin x]

π
2
0

)
dy

=
∫ 1

−1

(
π2

2
y + y3 − 4y

)
dy =

[
π2

4
y2 +

y4

4
− 2y2

]1

−1
=

π2

4
+

1
4
− 2−

(
π2

4
+

1
4
− 2
)
= 0.

b) Now we integrate the inner integral with respect to variable y

I =
∫ π

2

0
dx
∫ 1

−1

(
2x2y + y3

)
cos x dy =

∫ π
2

0

[(
x2y2 +

y4

4

)
cos x

]1

−1
dx

=
∫ π

2

0

((
x2 +

1
4

)
cos x−

(
x2 +

1
4

)
cos x

)
dx =

∫ π
2

0
0 dx = 0.

Hints

By Parts∫ b

a
u(x) · v′(x)dx

= [u(x) · v(x)]ba−
∫ b

a
u′(x) · v(x)dx
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11 – Double integral over rectangular domain Řy

Exercise

Compute following integrals over their domains D.

a)
∫∫
D

√
5x + 4 ln y dx dy, D : 0 ≤ x ≤ 1, 1 ≤ y ≤ 3

b)
∫∫
D

(
x2 + y2

)
dx dy, D : − 2 ≤ x ≤ 0, −1 ≤ y ≤ 2
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12 – Double integral over rectangular domain Řy

Exercise

Compute integral
∫∫
D

sin(2x + y)dx dy over domain D : 0 ≤ x ≤ π,
π

4
≤ y ≤ π.
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13 – Double integral over rectangular domain Řy

Exercise

Compute integral
∫∫
D

1
(x + y + 1)2 dx dy over domain D : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
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14 – Double integral over a general domain Řy

There is no reason to limit our problem to rectangular regions. The inte-
gral domain can be of a general shape. We extend the Riemann’s defini-
tion of the double integral over rectangular domain to a closed connected
bounded domain Ω without any problem. The domain is connected if we
can connect every two points from it by curve that lies within the domain.
We can always find a rectangle D that fulfils Ω ⊆ D and we can define
function f ∗(x, y) by

f ∗(x, y) =

{
f (x, y) ∀ [x, y] ∈ Ω,
0 ∀ [x, y] ∈ D \Ω.

Then it holds
∫∫
Ω

f (x, y)dx dy =
∫∫
D

f ∗(x, y)dx dy.

z

0

x yΩ

z = f (x, y)

D

The properties of the double integral over a general domain must corre-
spond to next Theorem:

Theorem (Properties of the double integral over a general domain)

1.
∫∫
Ω

c f (x, y)dx dy = c
∫∫
Ω

f (x, y)dx dy,

2.
∫∫
Ω

( f (x, y) + g(x, y))dx dy

=
∫∫
Ω

f (x, y)dx dy +
∫∫
Ω

g(x, y)dx dy,

3.
∫∫
Ω

f (x, y)dx dy =
∫∫
Ω1

f (x, y)dx dy +
∫∫
Ω2

f (x, y)dx dy,

where f , g are continuous functions on Ω, c ∈ R and Ω1, Ω2 are non-
overlapping domains that fulfil Ω = Ω1 ∪Ω2.
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15 – Double integral over a general domain Řy

There are two types of domains we need to look at.

Definition

1. Normal domain with respect to the x-axis is bounded by lines
x = a, x = b, where a < b, and continuous curves y = g1(x),
y = g2(x), where g1(x) < g2(x), for all x ∈ [a, b] .

2. Normal domain with respect to the y-axis is bounded by lines
y = c, y = d, where c < d, and continuous curves x = h1(y),
x = h2(y), where h1(y) < h2(y), for all y ∈ [c, d] .

y = g2(x)

y = g1(x)

a b

Ω

x

y

x = h2(y)x = h1(y)

c

d

Ω

x

y

Theorem (Fubini’s theorem)

1. If the function f (x, y) is continuous on a domain that is normal
with respect to the x-axis, then it holds

∫∫
Ω

f (x, y)dx dy =

b∫
a

dx

g2(x)∫
g1(x)

f (x, y)dy.

2. If the function f (x, y) is continuous on a domain that is normal
with respect to the y-axis, then it holds

∫∫
Ω

f (x, y)dx dy =

d∫
c

dy

h2(y)∫
h1(y)

f (x, y)dx.
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16 – Double integral over a general domain Řy

Example

Determine integration limits for
∫∫
Ω

f (x, y)dx dy over the domain Ω,

which is bounded by curves y2 = 2x and x = 2.

We need to find intersections of curves y2 = 2x and x = 2 by solving
the system of these two equations. We can eliminate variable x, receive
equation y2 = 4 and solve it. We obtain two solutions y1 = 2, y2 = −2.
Given curves intersects each other in points [2,−2] and [2, 2]. Treating the
domain Ω as a normal with respect to the x-axis, we can see the domain is
bounded by 0 ≤ x ≤ 2, while limits for variable y must be obtained from
the equation y2 = 2x. Therefore y = ±

√
2x.

We can express inequalities for Ω in the form:

Ω : 0 ≤ x ≤ 2,

−
√

2x ≤ y ≤
√

2x

and according to Fubini’s theorem

∫∫
Ω

f (x, y)dx dy =

2∫
0

dx

√
2x∫

−
√

2x

f (x, y)dy.

We can use a similar procedure and express the integral as an integral over
normal domain with respect to the y-axis with inequalities

Ω : −2 ≤ y ≤ 2,

y2

2
≤ x ≤ 2.

The double integral then takes form

∫∫
Ω

f (x, y)dx dy =

2∫
−2

dy
2∫

y2
2

f (x, y)dx.

y =
√

2x

y = −
√

2x

x = 2Ω

x1 3 42

y

−2

−1

1

2

0
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17 – Double integral over a general domain Řy

Example

Determine integration limits for
∫∫
Ω

f (x, y) dx dy over the domain Ω,

which is a triangle ABC, where A = [−3, 1], B = [5, 1], C = [1, 5].

Remark

Lines can be described algebraically by linear equations y = ax + b. We
substitute coordinates of points A and C to the equation and we obtain
system of two linear equations from which we calculate a and b:

A : 1 = −3a + b
C : 5 = a + b

We get a = 1, b = 4 and y = x + 4.

First, we express the domain as normal with respect to the x-axis. If we
bound the domain by −3 ≤ x ≤ 5, the upper limit of inner integral can’t
be written as one curve and we need to divide the domain Ω into two
subdomains Ω1, Ω2 by line x = 1:

Ω1 : − 3 ≤ x ≤ 1, Ω2 : 1 ≤ x ≤ 5,
1 ≤ y ≤ x + 4, 1 ≤ y ≤ 6− x.

Using Fubini’s theorem we can express

∫∫
Ω

f (x, y) dx dy =

1∫
−3

dx
x+4∫
1

f (x, y) dy +

5∫
1

dx
6−x∫
1

f (x, y) dy.

However, it is much better to express the domain as normal with respect
to the y-axis. There is no reason to split the domain which is now bounded
by inequalities

Ω : 1 ≤ y ≤ 5,
y− 4 ≤ x ≤ 6− y,

where we have expressed a variable x from boundary equations. The inte-
gral is written in the form

∫∫
Ω

f (x, y)dx dy =

5∫
1

dy

6−y∫
y−4

f (x, y)dx.

x−6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8

y

−1

2

3

4

5

6

7

0

Ω1 Ω2
y = 1

y = −x + 6
x = 6− y

y = x + 4
x = y− 4

A=[-3,1] B=[5,1]

C=[1,5]
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18 – Double integral over a general domain Řy

Example

Compute
∫∫
Ω

xy dx dy, Ω is bounded by y =
x
2

, y =
√

x, x ≥ 2.

Solving the system of equations y =
x
2

, y =
√

x we receive intersections of both curves in x = 0, x = 4.

y =
√

x

y = x
2x = 2

x1 3 4 5 6 72

y

1

2

3

0

It is better to express the domain as normal with respect to x-axis with boundaries

Ω : 2 ≤ x ≤ 4,
x
2
≤ y ≤

√
x

and compute the integral ∫∫
Ω

xy dx dy =

4∫
2

dx

√
x∫

x/2

xy dy =

4∫
2

x
[

y2

2

]√x

x/2
dx =

4∫
2

(
x2

2
− x3

8

)
dx =

[
x3

6
− x4

32

]4

2
=

11
6

.

The second approach requires splitting the domain into two subdomains. It is a good exercise to compute the example this way.
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19 – Double integral over a general domain Řy

Exercise

Compute integral
∫∫
Ω

(
5x2 − 2xy

)
dx dy. Domain Ω is triangle ABC, where A = [0, 0], B = [2, 0], C = [0, 1].
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20 – Double integral over a general domain Řy

Exercise

Compute integral
∫∫
Ω

x2 dx dy over domain Ω : y =
16
x

, y = x, x = 8.
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21 – Double integral over a general domain Řy

Exercise

Compute integral
∫∫
Ω

6xy dx dy over domain Ω : y = 0, x = 2, y = x2.
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22 – Double integral over a general domain Řy

Exercise

Compute integral
∫∫
Ω

xy dx dy over domain Ω : x2 + 4y2 ≤ 4, x ≥ 0, y ≥ 0.
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23 – Double integral over a general domain Řy

Exercise

Compute integral
∫∫
Ω

(1− 2x− 3y)dx dy over domain Ω : x2 + y2 ≤ 2.
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24 – Double integral in polar coordinates Řy

At this moment we are able to compute the double integral over a general
domain. In this section we want to look at some domains that are easier to
describe in a terms of polar coordinates. We might have a domain that is
a disc, ring or part of a disc or ring. Let us consider a double integral of an
arbitrary function over the disc with the center in the origin of coordinates
and with the radius r = 2 (same domain that is used in last Exercise).
Using Cartesian coordinates we obtain limits of the integral

Ω : −2 ≤ x ≤ 2,

−
√

4− x2 ≤ y ≤
√

4− x2.

and by Fubini’s theorem the integral can be written in the form

∫∫
Ω

f (x, y)dx dy =

2∫
−2

dx

√
4−x2∫

−
√

4−x2

f (x, y)dy.

x−4 −3 −2 −1 1 2 3

y

−1

1

2

3

5

0

[x, y]→ [ρ, ϕ]

[−3, 4]→ [5, 0.70483π]

A

ρ

ϕ

In such cases using Cartesian coordinates can be tedious. However, we are
able to replace Cartesian coordinates x, y by polar coordinates ρ, ϕ, where
ρ denotes a distance between the point [x, y] and the origin of coordinates
and is called a radius, and, ϕ denotes the positively oriented angle be-
tween positive part of the x-axis and the radius vector and is called angu-
lar coordinate or azimuth.

The transformation to cylindrical coordinates is given by transforma-
tion equations

x = ρ cos ϕ,
y = ρ sin ϕ.

Transformation to polar coordinates is a special case of mapping region
Ω onto Ω∗ that is an image of Ω in polar coordinates in our case. For
example a disc with the center in the origin of coordinates and with the
radius r = 2,

Ω =
{
[x, y] : x2 + y2 ≤ 4

}
,

is mapped onto

Ω∗ = {[ρ, ϕ] : ρ ∈ (0, 2 ] , ϕ ∈ [0, 2π )} .
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25 – Double integral in polar coordinates Řy

Theorem (Transformation to general coordinates)

• Let equations x = u(r, s), y = v(r, s) map the region Ω bijectively
to the region Ω∗.

• Let function f (x, y) be continuous and bounded on Ω and func-
tions x = u(r, s), y = v(r, s) have continuous partial derivatives
on Ω̂ that fulfils Ω∗ ⊂ Ω̂.

• Let J(u, v) =

∣∣∣∣∣∣∣
∂u
∂r

∂u
∂s

∂v
∂r

∂v
∂s

∣∣∣∣∣∣∣ 6= 0 in Ω∗.

Then ∫∫
Ω

f (x, y)dx dy =
∫∫
Ω∗

f (u(r, s), v(r, s))|J(u, v)|dr ds.

Determinant

J(u, v) =

∣∣∣∣∣∣∣
∂u
∂r

∂u
∂s

∂v
∂r

∂v
∂s

∣∣∣∣∣∣∣
is called Jacobian or Jacobi determinant.
We will use this theorem for transformation of the double integral to po-
lar coordinates as well as the triple integral to cylindrical and spherical
coordinates.

According to the theorem we replace square element dx dy by |J| dρ dϕ,
where the Jacobian of the transformation to polar coordinates satisfies

J(ρ, ϕ) =

∣∣∣∣∣∣∣∣
∂x
∂ρ

∂x
∂ϕ

∂y
∂ρ

∂y
∂ϕ

∣∣∣∣∣∣∣∣ =
∣∣∣∣ cos ϕ −ρ sin ϕ

sin ϕ ρ cos ϕ

∣∣∣∣ = ρ.

The transformation of the double integral to polar coordinates can be
written in the form∫∫

Ω

f (x, y)dx dy =
∫∫
Ω∗

f (ρ cos ϕ, ρ sin ϕ)ρ dρ dϕ.
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26 – Double integral in polar coordinates Řy

Example

Compute
∫∫
Ω

y dx dy over the domain Ω =
{
[x, y] : x2 + y2 ≤ 9, y ≥ 0

}
using transformation to polar coordinates.

Ω

x−3 −2 −1 1 2 3 4

y

1

2

4

0

The domain Ω is an upper half of the disc with the center in the origin of
coordinates and with radius r = 3. We use transformation to polar coordi-
nates and obtain the domain

Ω∗ : 0 < ρ ≤ 3,
0 ≤ ϕ ≤ π.

We have

∫∫
Ω

y dx dy =
∫∫
Ω∗

ρ sin ϕ · ρ dρ dϕ =

3∫
0

ρ2 dρ ·
π∫

0

sin ϕ dϕ

=

[
ρ3

3

]3

0
· [− cos ϕ]π0 = 18.

Example

Compute
∫∫
Ω

x dx dy over the domain Ω =
{
[x, y] : 4 ≤ x2 + y2 ≤ 9,

y ≥ x, x ≥ 0}.

We can see real advantage of the transformation on this domain. While
using Cartesian coordinates would be complicated, domain

Ω∗ =
{
[ρ, ϕ] : ρ ∈ [2, 3] , ϕ ∈

[π

4
,

π

2

]}
for polar coordinates is rectangular.

Ω

y = x

x

y

0 2 3

∫∫
Ω

x dx dy =
∫∫
Ω∗

ρ cos ϕ · ρ dρ dϕ =

3∫
2

ρ2 dρ ·
π/2∫

π/4

cos ϕ dϕ

=

[
ρ3

3

]3

2
· [sin ϕ]π/2

π/4 =
19
3

(
1−
√

2
2

)
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27 – Double integral in polar coordinates Řy

Example

Calculate limits of the integral transformed to polar coordinates for the
domain Ω =

{
[x, y] : x2 + y2 ≤ 2ax

}
.

Ω

xa 2a

y

0

First, we find the center and radius of the disc.

x2 + y2 ≤ 2ax
x2 − 2ax + a2 + y2 ≤ a2

(x− a)2 + y2 ≤ a2

We have found that center S = [a, 0] and radius r = a.

Remark

Although, limits of ϕ are usually between 0 ≤ ϕ ≤ 2π, in such cases,
we use negative limits, to prevent splitting of the domain.

The azimuth must fulfil −π

2
≤ ϕ ≤ π

2
. We can see that the upper limit of

coordinate ρ depends on the azimuth ϕ. We obtain the value of the limit
by substituting transformation equations to boundary equations of Ω.

x2 + y2 = 2ax
ρ2 cos2 ϕ + ρ2 sin2 ϕ = 2aρ cos ϕ

ρ2 = 2aρ cos ϕ

ρ(ρ− 2a cos ϕ) = 0

Roots ρ1 = 0 and ρ2 = 2a cos ϕ are limits of the integral. However, it is
necessary to realise the dependency of coordinate ρ on coordinate ϕ. We
can’t calculate integrals over such domains as in case of rectangular ones.
We need to use Fubini’s theorem. The integral of an arbitrary function can
be written as

∫∫
Ω

f (x, y)dx dy =

π/2∫
−π/2

dϕ

2a cos ϕ∫
0

f (ρ cos ϕ, ρ sin ϕ)ρ dρ.
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28 – Double integral in polar coordinates Řy

Exercise

Compute following integrals over their domains Ω:

a)
∫∫
Ω

(1− 2x− 3y)dx dy, Ω : x2 + y2 ≤ 2,

b)
∫∫
Ω

√
1− x2 − y2 dx dy, Ω : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0.
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29 – Double integral in polar coordinates Řy

Exercise

Compute integral
∫∫
Ω

sin
√

x2 + y2 dx dy over domain Ω : π2 ≤ x2 + y2 ≤ 4π2.
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30 – Double integral in polar coordinates Řy

Exercise

Compute integral
∫∫
Ω

ln
(
x2 + y2)

x2 + y2 dx dy over domain Ω : 1 ≤ x2 + y2 ≤ e.
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31 – Double integral in polar coordinates Řy

Exercise

Compute integral
∫∫
Ω

√
4− x2 − y2 dx dy over domain Ω : x2 + y2 ≤ 2x.
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32 – Double integral in polar coordinates Řy

Exercise

Compute integral
∫∫
Ω

xy dx dy over domain Ω : x2 + y2 ≤ 4y, y ≥ x ≥ 0.
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33 – Double integral in generalized polar coordinates Řy

Example

Compute
∫∫
Ω

√
4− x2

9
− y2

4
dx dy over Ω =

{
[x, y] : 4x2 + 9y2 ≤ 36

}
using transformation to generalized polar coordinates.

The boundary of the domain can be written in the form
x2

9
+

y2

4
= 1.

Therefore, the domain is ellipse with center in the origin of coordinates
and semi-axis a = 3, b = 2.

Ω

x

y

0

2

3

In such case we use generalized polar coordinates in the form

x = aρ cos ϕ,
y = bρ sin ϕ.

For Jacobian of the transformation we obtain

J(ρ, ϕ) =

∣∣∣∣∣∣∣∣
∂x
∂ρ

∂x
∂ϕ

∂y
∂ρ

∂y
∂ϕ

∣∣∣∣∣∣∣∣ =
∣∣∣∣ a cos ϕ −aρ sin ϕ

b sin ϕ bρ cos ϕ

∣∣∣∣ = abρ.

Using generalized polar coordinates we obtained transformed domain

Ω∗ = {[ρ, ϕ] : ρ ∈ (0, 1 ] , ϕ ∈ [0, 2π )}

and we can solve the integral now.

∫∫
Ω

√
4− x2

9
− y2

4
dx dy =

∫∫
Ω∗

√
4− (3ρ cos ϕ)2

9
− (2ρ sin ϕ)2

4
6ρ dρ dϕ

= 6
∫∫
Ω∗

√
4− ρ2ρ dρ dϕ = 6

2π∫
0

dϕ ·
1∫

0

√
4− ρ2ρ dρ = 6 · 2π · 1

3

(
8− 3

√
3
)

= 4π
(

8− 3
√

3
)

Integral over coordinate ρ was calculated using substitution

4− ρ2 = t,
−2ρ dρ = dt.
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34 – Double integral in generalized polar coordinates Řy

Exercise

Compute integral
∫∫
Ω

(2x + y)dx dy over domain Ω : 4x2 + y2 ≤ 16, y ≤ 0, x ≤ 0.
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35 – Double integral in generalized polar coordinates Řy

Exercise

Compute integral
∫∫
Ω

xy dx dy over domain Ω : x2 + 4y2 ≤ 4, x ≥ 0, y ≥ 0.



Worksheets for Mathematics III

36 – Practical applications of the double integral, area of a region Řy

The area of a region Ω is given by

A =
∫∫
Ω

dx dy.

Example

Calculate the area of a region Ω bounded by curves y = x2, y = 4− x2.

We need to find intersections of both parabolas y = x2, y = 4− x2 that are
x = ±

√
2. We write the domain as a normal with respect to the x-axis with

inequalities in the form:

Ω : −
√

2 ≤ x ≤
√

2,

x2 ≤ y ≤ 4− x2.

y = 4− x2

y = x2

Ω

−
√

2
√

2

2

x

y

4

0 2−2

We compute the area of our region using symmetry of the domain with
respect to the y-axis

A =
∫∫
Ω

dx dy =

√
2∫

−
√

2

dx
4−x2∫
x2

dy

= 2

√
2∫

0

(
4− 2x2

)
dx = 2

[
4x− 2

3
x3
]√2

0
=

16
√

2
3

.
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37 – Practical applications of the double integral, area of a region Řy

Example

Compute the area of domain

Ω = {[x, y] : x− y− 1 ≤ 0, x− 2y + 1 ≥ 0, 0 ≤ y ≤ 1} .

Domain is bounded by the lines y = 0, y = 1, y = x − 1 and y =
x + 1

2
.

If we write the domain as a normal with respect to the x-axis, we have to
split the domain. It is a good exercise to compute the example in this way.

y = x− 1
Ω1

Ω2

y = x+1
2

x−1 1 2 3 4

y

−1

1

2

0

We write the domain as a normal with respect to the y-axis with inequali-
ties in the form:

Ω : 2y− 1 ≤ x ≤ y + 1,
0 ≤ y ≤ 1

x = y + 1Ω

x = 2y− 1

x−1 1 2 3 4

y

−1

1

2

0

and compute the area of Ω:

A =
∫∫
Ω

dx dy =

1∫
0

dx

y+1∫
2y−1

dy =

1∫
0

(2− y)dy =

[
2y− y2

2

]1

0
=

3
2

.
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38 – Practical applications of the double integral, area of a region Řy

Exercise

Compute the areas of the regions bounded by curves:

a) y = x, y = 5x, x = 1,

b) y = x2 − 8x + 12, y = −2x + 4.
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39 – Practical applications of the double integral, area of a region Řy

Exercise

Compute the area of the region bounded by curves y = 2x, y = 2−2x, y = 4.
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40 – Practical applications of the double integral, area of a region Řy

Exercise

Compute the area of the region bounded by curves x2 + y2 = 4, x2 + y2 = 4y.
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41 – Practical applications of the double integral, volume of a body Řy

We know that
∫∫
D

f (x, y)dx dy of a positive function f (x, y) > 0 over a rectangular domain D

has a meaning of the volume of the prism with a rectangular base D bounded from above by the

function f (x, y). If we replace rectangle D by general domain Ω, we obtain
∫∫
Ω

f (x, y) dx dy and

we calculate volume of the cylindrical body with basis Ω and bounded from above by the function
f (x, y).

The volume of the cylindrical body with basis Ω bounded by an arbitrary function f (x, y) is
given by

V =
∫∫
Ω

| f (x, y)|dx dy.

z

0

x yΩ

z = f (x, y)
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42 – Practical applications of the double integral, volume of a body Řy

Example

Calculate the volume of the body bounded by surfaces 2x + 3y = 12,
2z = y2, x = 0, y = 0, z = 0.

The basis of the body lies in the plane z = 0. Planes 2x + 3y = 12, x = 0
and y = 0 are perpendicular to the basis, thus they define the triangular
domain Ω.

Ω
y = 4− 2

3 x

x1 2 3 4 5 6

y

1

2

3

4

0

Because z =
y2

2
≥ 0 for all [x, y] ∈ Ω, therefore the surface z =

y2

2
bounds

the body from above. We write the domain as a normal with respect to the
x-axis with inequalities for Ω in the form:

Ω : 0 ≤ x ≤ 6,

0 ≤ y ≤ 4− 2
3

x.

We compute the volume of the body

V =
∫∫
Ω

y2

2
dx dy =

1
2

6∫
0

dx

4− 2
3 x∫

0

y2 dy =
1
2

6∫
0

[
y3

3

]4− 2
3 x

0
dx

=
1
6

6∫
0

(
4− 2

3
x
)3

dx =
1
6
·
(
−3

2

)[(
4− 2

3 x
)4

4

]6

0

= 16.
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43 – Practical applications of the double integral, volume of a body Řy

Exercise

Compute the volume of the body bounded by surfaces x = 0, y = 0, z = 0, 6x + 3y+ z− 12 = 0.



Worksheets for Mathematics III

44 – Practical applications of the double integral, volume of a body Řy

Exercise

Compute the volume of the body bounded by surfaces z = 0, z = xy, y = 0, y =
√

x, x + y = 2.
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45 – Practical applications of the double integral, volume of a body Řy

Exercise

Compute the volume of the body bounded by surfaces z = 0, 2y = x2, z = y2 − 4.
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46 – Practical applications of the double integral, volume of a body Řy

Exercise

Compute the volume of the body bounded by surfaces z = 0, z = 1− x2 − y2.
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47 – Practical applications of the double integral, surface area Řy

We are able to compute the area of the surface z = f (x, y) where [x, y] is a point in the region Ω.
Function z = f (x, y) must have continuous partial derivatives on Ω. In this case surface area is
given by

S =
∫∫
Ω

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dx dy.

z

0

x yΩ

z = f (x, y)
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48 – Practical applications of the double integral, surface area Řy

Example

Calculate the area of a surface z =
√

2xy bounded by planes x = 1, x = 2, y = 1 and y = 4.

Partial derivatives of z are
∂z
∂x

=
y√
2xy

and
∂z
∂y

=
x√
2xy

. The domain Ω is a rectangle given by inequalities

Ω : 1 ≤ x ≤ 2,
1 ≤ y ≤ 4

and we calculate the surface area

S =
∫∫
Ω

√
1 +

(
∂z
∂x

)2

+

(
∂z
∂y

)2

dx dy =
∫∫
Ω

√
1 +

y2

2xy
+

x2

2xy
dx dy =

∫∫
Ω

√
2xy + x2 + y2

2xy
dx dy =

∫∫
Ω

√
(x + y)2

2xy
dx dy =

∫∫
Ω

x + y√
2xy

dx dy

=

2∫
1

dx
4∫

1

(√
x
2
· y− 1

2 +
1√
2x
· y 1

2

)
dy =

2∫
1

[√
x
2
· 2y

1
2 +

1√
2x
· 2

3
y

3
2

]4

1
dx =

2∫
1

(√
x
2
· 4 + 1√

2x
· 16

3
−
√

x
2
· 2− 1√

2x
· 2

3

)
dx

=

2∫
1

(√
x
2
· 2 + 1√

2x
· 14

3

)
dx =

2∫
1

(
2√
2
· x 1

2 +
14

3
√

2
· x− 1

2

)
dx =

[
2√
2
· 2

3
x

3
2 +

14
3
√

2
· 2x

1
2

]2

1
=

8
3
+

28
3
− 4

3
√

2
− 28

3
√

2
= 12− 32

3
√

2
= 12− 16

3

√
2.
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49 – Practical applications of the double integral, surface area Řy

Exercise

Compute the area of the surface x + y + z = 4 bounded by planes x = 0, x = 2, y = 0, y = 2.
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50 – Practical applications of the double integral, surface area Řy

Exercise

Compute the area of the surface y2 + z2 = 9 bounded by planes x = 0, x = 2, y = −3, y = 3.



Worksheets for Mathematics III

51 – Practical applications of the double integral, surface area Řy

Exercise

Compute the area of the surface z = xy in the cylinder x2 + y2 = 4.
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52 – Practical applications of the double integral, center of mass Řy

Let σ(x, y) > 0 be a surface density defined for each [x, y] ∈ Ω. The mass of a domain Ω is
defined by

m =
∫∫
Ω

σ(x, y)dx dy.

Static moment of the domain Ω with respect to the x-axis resp. y-axis is given by

Sx =
∫∫
Ω

y σ(x, y)dx dy resp. Sy =
∫∫
Ω

x σ(x, y)dx dy.

The coordinates of the center of mass C = [ξ, η] can be expressed as

ξ =
Sy

m
, η =

Sx

m
.
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53 – Practical applications of the double integral, center of mass Řy

Example

Compute the coordinates of the center of mass of the homogeneous re-
gion bounded by curves y = x and y = x2.

The curves have intersections in points [0, 0] and [1, 1]. See figure.

C

y = x

y = x2

Ω

x1

y

1

0

We write the domain as a normal with respect to the x-axis with inequali-
ties in the form:

Ω : 0 ≤ x ≤ 1,

x2 ≤ y ≤ x.

First we compute the mass of the homogeneous domain

m =
∫∫
Ω

σ(x, y)dxdy = σ

1∫
0

dx
x∫

x2

dy

= σ

1∫
0

(
x− x2

)
dx =

[
x2

2
− x3

3

]1

0
=

1
6

.

Then we calculate static moments

Sx =
∫∫
Ω

y σ(x, y)dx dy = σ

1∫
0

dx
x∫

x2

y dy = σ

1∫
0

[
y2

2

]x

x2
dx dy

= σ

1∫
0

(
x2

2
− x4

2

)
dx =

[
x3

6
− x5

10

]1

0
=

1
15

.

Sy =
∫∫
Ω

x σ(x, y)dx dy = σ

1∫
0

dx
x∫

x2

x dy = σ

1∫
0

[xy]xx2 dx dy

= σ

1∫
0

(
x2 − x3

)
dx =

[
x3

3
− x4

4

]1

0
=

1
12

.

Coordinates of the center are

ξ =
Sy

m
=

1
2

, η =
Sx

m
=

2
5

and center of mass is

C = [ξ, η] =

[
1
2

,
2
5

]
.
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54 – Practical applications of the double integral, center of mass Řy

Exercise

Compute the center of mass coordinates of the homogeneous region bounded by curves y = x2, x = 4, y = 0.
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Triple integral
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56 – Triple integral over rectangular hexahedron Řy

While we use a double integral to integrate over a two-dimensional re-
gions, we similarly use triple integral to integrate over three-dimensional
regions. The definition of the three-dimensional integral over a rectangu-
lar hexahedron is similar to definition we used for double integral over
a rectangle.
Let u = f (x, y, z) is a function of three variables that is continuous and
bounded on the rectangular hexahedron

G =
{
[x, y, x] ∈ R3 : x ∈ [a, b] , y ∈ [c, d] , z ∈ [e, h]

}
.

We divide intervals [a, b] , [c, d] , [e, h] by three sequences of points

a = x0 < x1 < x2 < . . . < xm = b,

c = y0 < y1 < y2 < . . . < yn = d

and
e = z0 < z1 < z2 < . . . < zp = h

to intervals [xi−1, xi], i = 1, 2, . . . , m,
[
yj−1, yj

]
, j = 1, 2, . . . , n and [zk−1, zk],

k = 1, 2, . . . , p. We denote ∆xi = xi − xi−1, ∆yj = yj − yj−1 and
∆zk = zk − zk−1.
The planes that lead through points xi or yj or zk parallel to coordinate
planes divide the hexahedron G to m · n · p small hexahedrons Gijk (see
Figure) with volume of each ∆Gijk = ∆xi · ∆yj · ∆zk. We choose an ar-
bitrary point [ξi, ηj, ζk] in each hexahedron Gijk and we create products
f (ξi, ηj, ζk) · ∆Gijk = f (ξi, ηj, ζk) · ∆xi · ∆yj · ∆zk that for positive function
f (x, y, z) ≥ 0 has a physical meaning of the mass of the hexahedron Gijk
with density f (ξi, ηj, ζk). The sum of these products

m

∑
i=1

n

∑
j=1

p

∑
k=1

f (ξi, ηj, ζk) · ∆xi · ∆yj · ∆zk

represents the mass of the body consisted of such hexahedrons.

Definition

If there exists

lim
m

∑
i=1

n

∑
j=1

p

∑
k=1

f (ξi, ηj, ζk) · ∆xi · ∆yj · ∆zk

for m → ∞, n → ∞, p → ∞, ∆xi → 0, ∆yj → 0, ∆zk → 0 for all
i = 1, 2, . . . , m, j = 1, 2, . . . , n, z = 1, 2, . . . , k, we call it a triple integral
of function f (x, y, z) over the rectangular hexahedron G and denote it
by ∫∫∫

G

f (x, y, z)dx dy dz.

The triple integral over a hexahedron G of a positive function f (x, y, z) > 0
has a meaning of the mass of a hexahedron G with density f (x, y, z).
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57 – Triple integral over rectangular hexahedron Řy

Theorem (Fubini’s theorem)

Let G =
{
[x, y, z] ∈ R3 : x ∈ [a, b] , y ∈ [c, d] , z ∈ [e, h]

}
. If a function

f (x, y, z) is continuous on the hexahedron G, then

∫∫∫
G

f (x, y, z)dx dy dz =

b∫
a

 d∫
c

 h∫
e

f (x, y, z)dz

 dy

 dx.

The Theorem is similar to two-dimensional Fubini’s theorem. We can
rewrite the formula by using a different order of integration in five more
ways. The triple integral is then converted to three one-dimensional inte-
grals. Similarly to the double integral, we can write

b∫
a

 d∫
c

 h∫
e

f (x, y, z)dz

 dy

 dx =

b∫
a

dx
d∫

c

dy
h∫

e

f (x, y, z)dz.

If the integrand f (x, y, z) can be written as a product of three functions
of one variable f (x, y, z) = f1(x) · f2(y) · f3(z), it holds:

∫∫∫
G

f (x, y, z)dx dy dz =

b∫
a

f1(x)dx ·
d∫

c

f2(y)dy ·
h∫

e

f3(z)dz.
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58 – Triple integral over rectangular hexahedron Řy

Theorem (Properties of the triple integral over a rectangular hexahedron)

1.
∫∫∫

G

c f (x, y, z)dx dy dz = c
∫∫∫

G

f (x, y, z)dx dy dz,

2.
∫∫∫

G

( f (x, y, z) + g(x, y, z))dx dy dz =
∫∫∫

G

f (x, y, z)dx dy dz +
∫∫∫

G

g(x, y, z)dx dy dz,

3.
∫∫∫

G

f (x, y, z)dx dy dz =
∫∫∫
G1

f (x, y, z)dx dy dz +
∫∫∫
G2

f (x, y, z)dx dy dz,

where f , g are continuous functions on G, c ∈ R and G1, G2 are non-overlapping hexahedrons that fulfil
G = G1 ∪ G2.
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59 – Triple integral over rectangular hexahedron Řy

Example

Compute
∫∫∫

G

xy2z dx dy dz over the rectangular hexahedron

G =
{
[x, y, z] ∈ R3 : x ∈ [0, 2] , y ∈ [1, 3] , z ∈ [1, 2]

}
.

∫∫∫
G

xy2z dx dy dz =

2∫
0

x dx ·
3∫

1

y2 dy ·
2∫

1

z dz

=

[
x2

2

]2

0
·
[

y3

3

]3

1
·
[

z2

2

]2

1
= 2 ·

(
9− 1

3

)
·
(

2− 1
2

)
= 2 · 26

3
· 3

2
= 26

Remark

If it is not possible to decompose the integrand as a product of three
one-dimensional integrals we can always use Fubini’s theorem.

Example

Compute
∫∫∫

G

(x + y)dx dy dz over the rectangular hexahedron

G =
{
[x, y, z] ∈ R3 : x ∈ [0, 1] , y ∈ [0, 2] , z ∈ [0, 3]

}
.

∫∫∫
G

(x + y)dx dy dz =

1∫
0

dx
2∫

0

dy
3∫

0

(x + y)dz =

1∫
0

dx
2∫

0

(x + y) [z]30 dy

= 3
1∫

0

dx
2∫

0

(x + y)dy = 3
1∫

0

[
xy +

y2

2

]2

0
dx = 3

1∫
0

(2x + 2)dx

= 6
[

x2

2
+ x
]1

0
= 6 · 3

2
= 9
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60 – Triple integral over rectangular hexahedron Řy

Exercise

Compute following integrals over their domains G.

a)
∫∫∫

G

xy2√z dx dy dz, G =
{
[x, y, z] ∈ R3 : x ∈ [−2, 1] , y ∈ [1, 3] , z ∈ [2, 4]

}

b)
∫∫∫

G

1
1− x− y

dx dy dz, G =
{
[x, y, z] ∈ R3 : x ∈ [0, 1] , y ∈ [2, 5] , z ∈ [2, 4]

}
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61 – Triple integral over rectangular hexahedron Řy

Exercise

Compute following integrals over their domains G.

a)
∫∫∫

G

ln xyz dx dy dz, G =
{
[x, y, z] ∈ R3 : x ∈ [1, 2] , y ∈ [0, 1] , z ∈ [0, 2]

}

b)
∫∫∫

G

(
1
x
+

2
y
+

3
z

)
dx dy dz, G =

{
[x, y, z] ∈ R3 : x ∈ [1, 2] , y ∈ [1, 2] , z ∈ [1, 2]

}
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62 – Triple integral over rectangular hexahedron Řy

Exercise

Compute following integrals over their domains G.

a)
∫∫∫

G

ex+y+z dx dy dz, G =
{
[x, y, z] ∈ R3 : x ∈ [0, 1] , y ∈ [0, 1] , z ∈ [0, 1]

}

b)
∫∫∫

G

√
xyz dx dy dz, G =

{
[x, y, z] ∈ R3 : x ∈ [0, 1] , y ∈ [0, 9] , z ∈ [0, 16]

}
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63 – Triple integral over a general domain Řy

Similarly like in two-dimensional case, we are able to generalize our prob-
lem of solving triple integrals over any three-dimensional region Ω that is
bounded by a closed surface. We consider only such surfaces that don’t
intersect themselves and lines parallel with z-axis leading through an ar-
bitrary inner point of the surface intersect with the surface in two points.
Such domain will be called normal domain with respect to the coordinate
plane xy.

We create an orthogonal projection Ω1 of the domain Ω into xy-plane.
A variable z must fulfil

f1(x, y) ≤ z ≤ f2(x, y).

The domain Ω1 is either normal with respect to x-axis or y-axis and we
describe it using approach from the Double integral section by inequalities
x1 ≤ x ≤ x2, g1(x) ≤ y ≤ g2(x) resp. y1 ≤ y ≤ y2, h1(y) ≤ x ≤ h2(y).
If the function f (x, y, z) is continuous on Ω we use a method similar to
Fubini’s theorem used in the Double integral section and express

∫∫∫
Ω

f (x, y, z)dx dy dz =

x2∫
x1

dx

g2(x)∫
g1(x)

dy

f2(x,y)∫
f1(x,y)

f (x, y, z)dz

resp.

∫∫∫
Ω

f (x, y, z)dx dy dz =

y2∫
y1

dy

h2(y)∫
h1(y)

dx

f2(x,y)∫
f1(x,y)

f (x, y, z)dz.

We start to integrate with respect to variable z, limits are functions of two
variables x, y. After that we calculate a double integral over a regular do-
main Ω1.
We are able to use analogical approach and create an orthogonal projec-
tion of the domain Ω into planes either xz or yz. That way we can use six
different orders of integration for an arbitrary domain.

Remark

The triple integral over a general closed domain has analogical proper-
ties as the triple integral over a rectangular hexahedron.
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64 – Triple integral over a general domain Řy

Example

Determine integration limits for integral
∫∫∫

Ω

f (x, y, z)dx dy dz over

the domain Ω that is bounded by surfaces z =
1
2

(
x2 + y2

)
and

z = 4− 1
2

(
x2 + y2

)
.

Both surfaces are rotational paraboloids and based on the figure where we
can see projection of the body into yz-plane

1
2

(
x2 + y2

)
≤ z ≤ 4− 1

2

(
x2 + y2

)
.

We obtain an equation of the intersection of both surfaces from the equa-
tion

1
2

(
x2 + y2

)
= 4− 1

2

(
x2 + y2

)
which leads to

x2 + y2 = 4.

Therefore, the orthogonal projection Ω1 of the domain Ω to coordinate
plane xy is a circle with the center in the origin of coordinates and radius
r = 2. That domain can be treated as a normal domain with respect to the
x-axis with inequalities

−2 ≤ x ≤ 2,

−
√

4− x2 ≤ y ≤
√

4− x2,

as well as a normal domain with respect to the y-axis with inequalities

−2 ≤ y ≤ 2,

−
√

4− y2 ≤ x ≤
√

4− y2.

z = 1
2

(
x2 + y2)

z = 4− 1
2

(
x2 + y2)

x−2 −1 1 2

z

1

2

3

0

4
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65 – Triple integral over a general domain Řy

Example

Compute integral
∫∫∫

Ω

x dx dy dz over the domain Ω bounded by sur-

faces x = 0, y = 0, z = 0, 2x + 2y + z− 6 = 0.

z

0

6

x 3

y
3

Ω1

Ω

y = 3− x

2x + 2y + z− 6 = 0

Based on the figure, the domain Ω must fulfil

0 ≤ z ≤ 6− 2x− 2y

The orthogonal projection Ω1 of the domain Ω to xy-plane is the triangle
bounded by lines x = 0, y = 0, y = 3− x. The last equation is intersection
of planes 2x + 2y + z− 6 = 0 and z = 0.
We describe Ω1 as normal with respect to x-axis by inequalities

Ω1 : 0 ≤ x ≤ 3,
0 ≤ y ≤ 3− x

and we can calculate the integral

∫∫∫
Ω

x dx dy dz =

3∫
0

dx
3−x∫
0

dy

6−2x−2y∫
0

x dz =

3∫
0

dx
3−x∫
0

[xz]6−2x−2y
0 dy

=

3∫
0

dx
3−x∫
0

x(6− 2x− 2y)dy =

3∫
0

x
[
6y− 2xy− y2

]3−x

0
dx

=

3∫
0

x
[
6(3− x)− 2x(3− x)− (3− x)2

]
dx =

3∫
0

(x3 − 6x2 + 9x)dx

=

[
x4

4
− 2x3 +

9
2

x2
]3

0
=

27
4

.
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66 – Triple integral over a general domain Řy

Exercise

Compute integral
∫∫∫

Ω

x3y2z dx dy dz over domain Ω =
{
[x, y, z] ∈ R3 : y ≥ 0, y ≤ x, x ≤ 1, z ≥ 0, z ≤ xy

}
.
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67 – Triple integral over a general domain Řy

Exercise

Compute integral
∫∫∫

Ω

1
1 + x + y

dx dy dz over domain Ω =
{
[x, y, z] ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1

}
.
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68 – Triple integral over a general domain Řy

Exercise

Compute integral
∫∫∫

Ω

x + z
4 + y

dx dy dz over domain Ω =
{
[x, y, z] ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0, x + z ≤ 3, y ≤ 4

}
.
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69 – Triple integral over a general domain Řy

Exercise

Compute integral
∫∫∫

Ω

y cos(x + z)dx dy dz over domain Ω =
{
[x, y, z] ∈ R3 : y ≤

√
x, y ≥ 0, z ≥ 0, x + z ≤ π

2

}
.
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70 – Triple integral over a general domain Řy

Exercise

Compute integral
∫∫∫

Ω

dx dy dz over domain Ω =
{
[x, y, z] ∈ R3 : x + y ≤ 1, y ≥ 0, y ≤ 2x, z ≥ 0, z ≤ 1− x2

}
.
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71 – Triple integral over a general domain Řy

Exercise

Compute integral
∫∫∫

Ω

z dx dy dz over domain Ω =
{
[x, y, z] ∈ R3 : x2 + y2 ≤ 4, 0 ≤ z ≤ 2, y ≥ 0

}
.
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72 – Transformation of the triple integral Řy

Similarly to the double integral, using Cartesian coordinates for some domains can be rather complicated. Especially in case of cylinders, cones or spheres.
Therefore, we formulate analogical theorem that describes general transformation of the triple integral.

Theorem (Transformation to general coordinates)

• Let equations x = u(r, s, t), y = v(r, s, t), z = w(r, s, t) map the region Ω bijectively to the region Ω∗.

• Let function f (x, y, z) be continuous and bounded on Ω and functions x = u(r, s, t), y = v(r, s, t), z = w(r, s, t) have continuous partial derivatives
on Ω̂ that fulfils Ω∗ ⊂ Ω̂.

• Let J(u, v, w) =

∣∣∣∣∣∣∣∣∣∣∣

∂u
∂r

∂u
∂s

∂u
∂t

∂v
∂r

∂v
∂s

∂v
∂t

∂w
∂r

∂w
∂s

∂w
∂t

∣∣∣∣∣∣∣∣∣∣∣
6= 0 in Ω∗.

Then ∫∫∫
Ω

f (x, y, z)dx dy dz =
∫∫∫
Ω∗

f (u(r, s, t), v(r, s, t), w(r, s, t))|J|dr ds dt.

Determinant J(u, v, w) =

∣∣∣∣∣∣∣∣∣∣∣

∂u
∂r

∂u
∂s

∂u
∂t

∂v
∂r

∂v
∂s

∂v
∂t

∂w
∂r

∂w
∂s

∂w
∂t

∣∣∣∣∣∣∣∣∣∣∣
is again called Jacobian or Jacobi determinant.
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73 – Transformation to cylindrical coordinates Řy

Transformation to cylindrical coordinates is suitable for integration do-
mains such as cylinders, cones or their parts. It is used in cases when
orthogonal projection Ω1 of the domain Ω to plane xy is a disc or a part of
a disc. We replace Cartesian coordinates x, y, z by cylindrical coordinates
ρ, ϕ, z, according to the following figure.

The meaning of coordinates ρ, ϕ is the same as we have already used for
polar coordinates and the third coordinate z doesn’t change.

The transformation to cylindrical coordinates is given by transforma-
tion equations

x = ρ cos ϕ,
y = ρ sin ϕ,
z = z.

According to theorem describing transformation to general coordinates,
we replace volume element dx dy dz by |J|dρ dϕ dz, where the Jacobian
of the transformation to cylindrical coordinates satisfies

J(ρ, ϕ, z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂ρ

∂x
∂ϕ

∂x
∂z

∂y
∂ρ

∂y
∂ϕ

∂y
∂z

∂z
∂ρ

∂z
∂ϕ

∂z
∂z

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos ϕ −ρ sin ϕ 0
sin ϕ ρ cos ϕ 0

0 0 1

∣∣∣∣∣∣ = ρ.

The transformation of the triple integral to cylindrical coordinates can
then be written in the form∫∫∫

Ω

f (x, y, z)dx dy dz =
∫∫∫
Ω∗

f (ρ cos ϕ, ρ sin ϕ, z)ρ dρ dϕ dz.
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74 – Transformation to cylindrical coordinates Řy

Example

Compute
∫∫∫

Ω

dx dy dz over the domain Ω bounded by surfaces

x2 + y2 = 1, z = 0, z = 1.

The domain Ω is the rotational cylinder symmetrical with respect to the
z-axis, with radius of the base ρ = 1 and height z = 1, according to the
following figure.

We need to determine the bounds of the transformed domain Ω∗. It is
obvious that 0 ≤ z ≤ 1. Inequalities for coordinates ρ, ϕ are the same
as for transformation to polar coordinates, i.e. 0 ≤ ρ ≤ 1, 0 ≤ ϕ ≤ 2π.
Therefore

∫∫∫
Ω

dx dy dz =
∫∫∫
Ω∗

ρ dρ dϕ dz =

2π∫
0

dϕ ·
1∫

0

ρ dρ ·
1∫

0

dz

= [ϕ]2π
0 ·

[
ρ2

2

]1

0
· [z]10 = π.
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75 – Transformation to cylindrical coordinates Řy

Example

Compute
∫∫∫

Ω

dx dy dz over the domain Ω bounded by surfaces

z = 3x2 + 3y2, z = 1− x2 − y2.

Both surfaces are paraboloids and the orthogonal projection Ω1 of the do-
main Ω to coordinate plane x, y is a ring, whose equation we obtain from
the intersection of both paraboloids

3x2 + 3y2 = 1− x2 − y2

x2 + y2 =
1
4

.

z = 1− x2

z = 3x2

−1
2

1
2

x−1 1

z

1

0

−1
2

1
2

x

y

0

x2 + y2 = 1
4

Ω1

Therefore, inequalities for coordinates ρ, ϕ must fulfil

0 ≤ ρ ≤ 1
2

,

0 ≤ ϕ ≤ 2π.

We obtain limits of the variable z from equations of both paraboloids by
substituting of variables

z = 3x2 + 3y2 = 3ρ2 cos2 ϕ + 3ρ2 sin2 ϕ = 3ρ2,

z = 1− x2 − y2 = 1− ρ2 cos2 ϕ− ρ2 sin2 ϕ = 1− ρ2.

Hence
3ρ2 ≤ z ≤ 1− ρ2.

We compute the integral by using transformation to cylindrical coordi-
nates

∫∫∫
Ω

dx dy dz =
∫∫∫
Ω∗

ρ dρ dϕ dz =

2π∫
0

dϕ

1/2∫
0

dρ

1−ρ2∫
3ρ2

ρ dz

= 2π

1/2∫
0

ρ[z]1−ρ2

3ρ2 dρ = 2π

1/2∫
0

ρ
(

1− 4ρ2
)

dρ = 2π

1/2∫
0

(
ρ− 4ρ3

)
dρ

= 2π

[
ρ2

2
− ρ4

]1/2

0
= 2π · 1

16
=

π

8
.
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76 – Transformation to cylindrical coordinates Řy

Exercise

Compute integral
∫∫∫

Ω

dx dy dz over domain Ω =
{
[x, y, z] ∈ R3 : x2 + y2 ≤ 1, x ≥ 0, 0 ≤ z ≤ 6

}
.
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77 – Transformation to cylindrical coordinates Řy

Exercise

Compute integral
∫∫∫

Ω

z dx dy dz over domain Ω =
{
[x, y, z] ∈ R3 : x2 + y2 ≤ 9, x ≤ y ≤ x

√
3, 0 ≤ z ≤ 4

}
.
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78 – Transformation to cylindrical coordinates Řy

Exercise

Compute integral
∫∫∫

Ω

z dx dy dz over their domain Ω =

{
[x, y, z] ∈ R3 : z ≥

√
x2 + y2, z ≤ 1

}
.
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79 – Transformation to cylindrical coordinates Řy

Exercise

Compute integral
∫∫∫

Ω

z
√

x2 + y2 dx dy dz over their domain Ω =
{
[x, y, z] ∈ R3 : x2 + y2 ≤ 2x, 0 ≤ z ≤ 1

}
.
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80 – Transformation to spherical coordinates Řy

Transformation to spherical coordinates is suitable for integrals where in-
tegration domains are spheres, ellipsoids or their parts. We replace Carte-
sian coordinates x, y, z by spherical coordinates ρ, ϕ, ϑ according to the fol-
lowing figure.

The coordinate ρ denotes a distance between the point [x, y, z] and the ori-
gin of the coordinates, ϕ denotes positively oriented angle in coordinate
xy-plane between positive part of the x-axis and the projection ρ1 of the
radius vector ρ to coordinate xy-plane and ϑ denotes positively oriented
angle between positive part of the z-axis and the radius vector ρ.

We obtain transformation equations

x = ρ cos ϕ sin ϑ,
y = ρ sin ϕ sin ϑ,
z = ρ cos ϑ.

Jacobian of the transformation to spherical coordinates satisfies

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x
∂ρ

∂x
∂ϕ

∂x
∂ϑ

∂y
∂ρ

∂y
∂ϕ

∂y
∂ϑ

∂z
∂ρ

∂z
∂ϕ

∂z
∂ϑ

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos ϕ sin ϑ −ρ sin ϕ sin ϑ ρ cos ϕ cos ϑ
sin ϕ sin ϑ ρ cos ϕ sin ϑ ρ sin ϕ cos ϑ

cos ϑ 0 −ρ sin ϑ

∣∣∣∣∣∣

= −ρ2 sin ϑ.

Transformation of the triple integral to spherical coordinates can be
written in the form ∫∫∫

Ω

f (x, y, z)dx dy dz

=
∫∫∫
Ω∗

f (ρ cos ϕ sin ϑ, ρ sin ϕ sin ϑ, ρ cos ϑ)ρ2 sin ϑ dρ dϕ dϑ.

The sphere with the center in the origin of coordinates and radius a trans-
formed to spherical coordinates is mapped to domain Ω∗ given by inequal-
ities

Ω∗ : 0 ≤ ρ ≤ a,
0 ≤ ϕ ≤ 2π,
0 ≤ ϑ ≤ π.
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81 – Transformation to spherical coordinates Řy

Example

Compute
∫∫∫

Ω

(
x2 + y2 + z2

)
dx dy dz over the domain Ω bounded by

x2 + y2 + z2 ≥ 1 and x2 + y2 + z2 ≤ 4.

The domain Ω is bounded by two spherical surfaces with the center in the
origin of coordinates and radii ρ1 = 1, ρ2 = 2. We use transformation to
spherical coordinates with inequalities

Ω∗ : 1 ≤ ρ ≤ 2,
0 ≤ ϕ ≤ 2π,
0 ≤ ϑ ≤ π.

and calculate the integral using transformation to spherical coordinates∫∫∫
Ω

(
x2 + y2 + z2

)
dx dy dz

=
∫∫∫
Ω∗

(
ρ2 cos2 ϕ sin2 ϑ + ρ2 sin2 ϕ sin2 ϑ + ρ2 cos2 ϑ

)
ρ2 sin ϑ dρ dϕ dϑ

=

2∫
1

dρ

2π∫
0

dϕ

π∫
0

ρ4 sin ϑ dϑ =

2∫
1

ρ4 dρ ·
2π∫
0

dϕ ·
π∫

0

sin ϑ dϑ

=

[
ρ5

5

]2

1
· [ϕ]2π

0 · [− cos ϑ]π0 =
31
5
· 2π · 2 =

124
5

π.

Example

Compute integral
∫∫∫

Ω

z dx dy dz over the domain Ω bounded by

x2 + y2 + z2 ≤ 4, x ≥ 0, y ≥ 0, z ≥ 0.

The domain Ω is one eighth of the sphere in the first octant with the center
in the origin of coordinates and radius ρ = 2. Therefore

Ω∗ : 0 ≤ ρ ≤ 2,

0 ≤ ϕ ≤ π

2
,

0 ≤ ϑ ≤ π

2
.

and ∫∫∫
Ω

z dx dy dz =
∫∫∫
Ω∗

ρ cos ϑ ρ2 sin ϑ dρ dϕ dϑ

=

2∫
0

dρ

π/2∫
0

dϕ

π/2∫
0

ρ3 sin ϑ cos ϑ dϑ =

2∫
0

ρ3 dρ ·
π/2∫
0

dϕ ·
π/2∫
0

1
2

sin 2ϑ dϑ

=

[
ρ4

4

]2

0
· [ϕ]π/2

0 ·
[
−1

4
cos 2ϑ

]π/2

0
= 4 · π

2
· 1

2
= π.
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82 – Transformation to spherical coordinates Řy

Exercise

Compute integral
∫∫∫

Ω

z
(

x2 + y2
)

dx dy dz over domain Ω =
{
[x, y, z] ∈ R3 : x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0

}
.
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83 – Transformation to spherical coordinates Řy

Exercise

Compute integral
∫∫∫

Ω

√
x2 + y2 + z2 dx dy dz over domain Ω =

{
[x, y, z] ∈ R3 : x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0

}
.
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84 – Transformation to spherical coordinates Řy

Exercise

Compute integral
∫∫∫

Ω

(
x2 + y2

)
dx dy dz over domain Ω =

{
[x, y, z] ∈ R3 : 4 ≤ x2 + y2 + z2 ≤ 9, z ≥ 0

}
.



Worksheets for Mathematics III

85 – Transformation to spherical coordinates Řy

Exercise

Compute integral
∫∫∫

Ω

dx dy dz
1 + x2 + y2 + z2 over domain Ω =

{
[x, y, z] ∈ R3 : x2 + y2 + z2 ≤ 4, x ≤ y ≤ x

√
3, z ≥ 0

}
.
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86 – Practical applications of the triple integral, volume of a body Řy

The volume of the body Ω is given by

V =
∫∫∫

Ω

dx dy dz.

Example

Compute the volume of the body bounded by cylindrical surfaces
z = 5− y2, z = y2 + 3 and planes x = 0, x = 2.

While limits of variables x, z are obvious, we need to calculate intersections
of cylindrical surfaces to determine the limits of variable y.

5− y2 = y2 + 3
2y2 = 2

y = ±1.

z = 5− y2

z = 3 + y2

y−2 −1 1 2

z

1

2

4

3

5

Therefore, inequalities for the domain Ω are in the form

Ω : 0 ≤ x ≤ 2,
−1 ≤ y ≤ 1,

y2 + 3 ≤ z ≤ 5− y2.

We calculate volume of the body by using the triple integral

V =
∫∫∫

Ω

dx dy dz =

2∫
0

dx
1∫
−1

dy

5−y2∫
y2+3

dz =

2∫
0

dx
1∫
−1

[z]5−y2

y2+3 dy

=

2∫
0

dx ·
1∫
−1

(2− 2y2) dy = 2
[

2y− 2y3

3

]1

−1
= 2 · 8

3
=

16
3

.
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87 – Practical applications of the triple integral, volume of a body 1/2 Řy

Example

Compute the volume of the body bounded by surfaces x2 + y2 + z2 = r2

and x2 − rx + y2 = 0.

The equation x2 + y2 + z2 = r2 describes spherical surface with the center
in the coordinate origin and radius r. The second equation x2− rx+ y2 = 0
can be rewritten to (

x− r
2

)2
+ y2 =

( r
2

)2

which describes a cylindrical surface parallel to z-axis. Its projection to
xy-plane is a ring with center S =

[ r
2

, 0
]

and radius
r
2

. Intersection of both
surfaces is well known Viviani’s curve and you can see both surfaces and
the domain on the figure.
We will calculate the volume of the domain by transformation to cylindri-
cal coordinates. The domain is symmetrical and therefore we will calculate
only one quarter of the whole domain for y ≥ 0, z ≥ 0. The upper limit for
parameter z is obtained by transformation of the equation of the sphere to
cylindrical coordinates

z =
√

r2 − x2 − y2 =
√

r2 − ρ2.

The method of finding the limits for parameters ϕ, ρ with center in the
point S was explained in the section Polar coordinates. By using such
method we obtain for the transformation to cylindrical coordinates lim-
its in the form

Ω : 0 ≤ ϕ ≤ π

2
,

0 ≤ ρ ≤ r cos ϕ,

0 ≤ z ≤
√

r2 − ρ2.

We have to be careful with the order of integration. The limits of parameter
z depends on radius ρ, while parameter ρ depends on azimuth ϕ. There-
fore the first integration (inner integral) must be calculated with respect to
z and the last one (outer integral) must be with respect to ϕ.
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Therefore the volume of the body from previous page is calculated by

V = 4
∫∫∫

Ω

dx dy dz = 4
∫∫∫

Ω

ρ dϕ dρ dz

= 4
π/2∫
0

dϕ

r cos ϕ∫
0

dρ

√
r2−ρ2∫
0

ρ dz = 4
π/2∫
0

dϕ

r cos ϕ∫
0

ρ
√

r2 − ρ2 dρ.

We solve this integral by substituting t = r2 − ρ2 from which we obtain

−1
2

dt = ρ dρ. We also transform the integration limits. For the lower

limit ρ = 0 it holds t = r2, while for the upper limit ρ = r cos ϕ similarly

t = r2 − r2 cos2 ϕ = r2 sin2 ϕ.

The integration then follows

V = 4
π/2∫
0

dϕ

r2 sin2 ϕ∫
r2

−1
2

√
t dt = 2

π/2∫
0

[
2
3

t3/2
]r2

r2 sin2 ϕ

dϕ

=
4
3

π/2∫
0

(r3 − r3 sin3 ϕ)dϕ =
4
3

r3

 π/2∫
0

dϕ−
π/2∫
0

sin3 ϕ dϕ

 .

We need another substitution for solving the second integral of trigono-
metrical function sin3 ϕ. By putting u = cos ϕ and du = − sin ϕ dϕ and

transforming of the integration limits u(0) = 1, u
(π

2

)
= 0 we obtain

V =
4
3

r3

[ϕ]π/2
0 −

1∫
0

(1− u2)du


=

4
3

r3

(
π

2
−
[

u− u3

3

]1

0

)
=

2
3

r3
(

π − 4
3

)
.
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Example

Compute the volume of the body bounded by surfaces

x2 + y2 + (z− r)2 = r2 and z =
√

3x2 + 3y2.

The equation x2 + y2 + (z − r)2 = r2 describes the sphere with radius r

and the center in point S = [0, 0, r]. The second equation z =
√

3x2 + 3y2

describes the cone oriented along the z-axis with vertex in the coordinates
origin. We will transform the problem to spherical coordinates. While
the limits for azimuth ϕ must be 0 ≤ ϕ ≤ 2π, we have to find also the
limits for angle ϑ. Let us make the projection of the domain to yz-plane,
which is visible on the figure. By putting x = 0 in the equation of the cone

z =
√

3x2 + 3y2 we obtain the equation of both lines

z =
√

3y2 =
√

3|y|.

Therefore, the upper limit for the angle ϑ must fulfil

tan ϑ =
y
z
=

1√
3
=

√
3

3
.

Hence, the upper limit for ϑ =
π

6
. We can also find the upper limit for

radius ρ. We transform the equation of the sphere to x2 + y2 + z2− 2zr = 0
and then to spherical coordinates

ρ2 − 2rρ cos ϑ = 0
ρ(ρ− 2r cos ϑ) = 0

We have
Ω∗ : 0 ≤ ϕ ≤ 2π,

0 ≤ ϑ ≤ π

6
,

0 ≤ ρ ≤ 2r cos ϑ.

The limits of variable ρ depends on variable ϑ, therefore we have to start
the calculation with inner integral with respect to variable ρ.

V =

2π∫
0

dϕ

π/6∫
0

dϑ

2r cos ϑ∫
0

ρ2 sin ϑ dρ = 2π

π/6∫
0

sin ϑ

[
ρ3

3

]2r cos ϑ

0
dϑ

=
16
3

πr3
π/6∫
0

sin ϑ cos3 ϑ dϑ =

∣∣∣∣∣∣
t = cos ϑ 0→ 1

dt = − sin ϑ dϑ
π

6
→
√

3
2

∣∣∣∣∣∣
= −16

3
πr3

√
3/2∫

1

t3 dt =
16
3

πr3
[

t4

4

]1

√
3/2

=
7
12

πr3.
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Exercise

Compute the volume of body bounded by surfaces z = x2 + y2, z = y.
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Exercise

Compute the volume of body bounded by surfaces x− y+ z = 6, x + y = 2, x = y, y = 0, z = 0.
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Exercise

Compute the volume of body bounded by surfaces y = x2, z = 0, y + z = 2.
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Exercise

Compute the volume of body bounded by surfaces y = ln x, y = ln2 x, z = 0, y + z = 1.
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Mass of the body Ω is given by

m =
∫∫∫

Ω

σ(x, y, z)dx dy dz

where σ(x, y, z) > 0 denotes volume density in each point of the domain
Ω.

Example

Compute the mass of the body bounded by surfaces x2 + y2 + z2 ≤ 4.
The volume density in each point of Ω is equal to its distance to the
coordinates origin.

The domain Ω is the sphere with center in the coordinate origin and ra-
dius 2. Therefore we will calculate the problem by using transformation to
spherical coordinates with transformation equations

x = ρ cos ϕ sin ϑ,
y = ρ sin ϕ sin ϑ,
z = ρ cos ϑ.

The volume density in each point of Ω is equal to its distance to the coor-
dinates origin, therefore

σ =
√

x2 + y2 + z2 = ρ.

After the transformation to spherical coordinates, the domain is rectangu-
lar given by inequalities

Ω∗ 0 ≤ ρ ≤ 2,
0 ≤ ϕ ≤ 2π,
0 ≤ ϑ ≤ π.

Now, we can calculate mass of the sphere

m =
∫∫∫

Ω

√
x2 + y2 + z2 dx dy dz =

∫∫∫
Ω∗

ρ · ρ2 sin ϑ dρ dϕ dϑ

=

2π∫
0

dϕ ·
π∫

0

sin ϑ dϑ ·
2∫

0

ρ3 dρ = [ϕ]2π
0 · [−cosϑ]π0 ·

[
ρ4

4

]2

0

= 2π · 2 · 4 = 16π.
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Exercise

Compute the mass of body x2 + y2 + z2 ≤ 1 with density σ =
2

x2 + y2 + z2 .
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Exercise

Compute the mass of body bounded by surfaces x2 = 2y, y + z = 1, 2y + z = 2, with density σ = y.
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Let the domain Ω is a body with given density σ(x, y, z) > 0 in each
point X = [x, y, z] ∈ Ω.
Statical moment of a body Sxy or Sxz or Sxz to coordinate plane xy or
xz or yz is defined by

Sxy =
∫∫∫

Ω

z σ(x, y, z)dx dy dz,

Sxz =
∫∫∫

Ω

y σ(x, y, z)dx dy dz,

Syz =
∫∫∫

Ω

x σ(x, y, z)dx dy dz.

The coordinates of center of mass C = [ξ, η, ζ] can then by calculated
by

ξ =
Syz

m
, η =

Sxz

m
, ζ =

Sxy

m
,

where m is the mass of the body.

Moment of inertia of the body rotating around the x-axis resp. y-axis
resp. z-axis is given by

Ix =
∫∫∫

Ω

(
y2 + z2

)
σ(x, y, z)dx dy dz,

Iy =
∫∫∫

Ω

(
x2 + z2

)
σ(x, y, z)dx dy dz,

Iz =
∫∫∫

Ω

(
x2 + y2

)
σ(x, y, z)dx dy dz.
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Exercise

Calculate the statical moments of a body x2 + y2 + z2 ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0 to xy-plane.
Consider constant density σ.
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Exercise

Calculate the statical moments of a cone with radius of the base r = 3 and height h = 2 to plane that is parallel to the base going through the vertex of
the cone. Consider constant density σ.
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Exercise

Calculate the moments of inertia of the body bounded by surfaces x + 2y + 3z = 1, x = 0, y = 0, z = 0 rotating around y-axis. Consider constant
density σ.
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Exercise

Calculate the moments of inertia of the body bounded by surfaces x2 + y2 = z2, z = 1 rotating around z-axis. Consider constant density σ.
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Definition

Let D ⊆ R. A vector function of one real variable t ∈ D is defined as
a function of one real variable whose range is a vector

f(t) = x(t) i + y(t) j + z(t) k = (x(t), y(t), z(t))

Components x(t), y(t), z(t) are real functions of variable t.

From the geometrical point of view the vector function f(t) de-
scribes the set of points in three-dimensional space with coordinates
[x(t), y(t), z(t)], t ∈ D. It will create the graph of the vector function.
If x(t), y(t), z(t) are continuous for each t ∈ D = [a, b], then continuous
vector function f(t) defines three-dimensional curve, whose parametrical
equations are given by x = x(t), y = y(t), z = z(t), t ∈ [a, b] . From
the physical point of view the vector function represent the trajectory of
moving mass point.
We can define all key concepts of calculus also for vector functions - limits,
continuity, derivatives, indefinite and definite integral. The calculation
is made for each component separately. We can also use all concepts of
vector algebra for vector functions - operations with vectors, inner and
vector product.

Example

Draw the graph of the vector function

f = (1 + t) i + (2− t) j, t ∈ [0, 1].

The function is continuous on its domain. The graph is a two-dimensional
curve. Parametrical equations of curve

x = 1 + t,
y = 2− t, t ∈ [0, 1]

describes the segment of line AB, given by A = [x(0), y(0)] = [1, 2]
and B = [x(1), y(1)] = [2, 1], see figure.
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Example

Draw the graph of the vector function

f = 3 cos t i + 3 sin t j, t ∈ [0, 2π].

Function is continuous on its domain. The graph is a two-dimensional
curve. Parametrical equations of curve

x = 3 cos t,
y = 3 sin t, t ∈ [0, 2π]

describes circle with center in the coordinate origin and radius r = 3, see
figure. Starting and ending point of the curve is the same

A = B = [x(0), y(0)] = [x(2π), y(2π)] = [3, 0].

We can prove it by raising both parametrical equations to the second
power

x2 = 9 cos2 t, y2 = 9 sin2 t

and summing them together

x2 + y2 = 9(cos2 t + sin2 t) = 9.

Example

Draw the graph of the vector function

f = cos t i + sin t j + t k, t ∈ [0,+∞).

Function is continuous on its domain. The graph is a three-dimensional
curve. Parametrical equations of curve

x = cos t,
y = sin t,
z = t, t ∈ [0, ∞)

define the screw line with starting point [1,0,0] on cylindrical surface
x2 + y2 = 1. Analogically to the previous example, we can obtain this
equation by raising first two parametrical equations to the second power
and summing them together, see figure.
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Exercise

Draw the graph of the vector function

a) f = 2 cos t i + 3 sin t j, t ∈ [0, 2π),

b) f = t2 i + t j, t ∈ (−∞,+∞).
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Definition

Scalar field on the domain Ω ⊂ R3 is given by an scalar function
u = u(x, y, z) defined on Ω.

Scalar field assigns one real number (scalar) to each point in Ω. The rate of
change of the scalar field is given by directional derivative.

Definition

Let the scalar field u = u(x, y, z) is given on the domain Ω, point
A = [a1, a2, a3] ∈ Ω and unit vector s = (s1, s2, s3). We define the limit

lim
t→0+

u(A + ts)− u(A)

t

as directional derivative of the scalar field u(x, y, z) in the point A along

the vector s and we denote it by
du(A)

ds
.

Theorem

Let partial derivatives of the scalar function u exist in the point
A ∈ Ω. The directional derivative of the scalar field u(x, y, z) in the
point A along the unit vector s can be written in the form

du(A)

ds
=

∂u(A)

∂x
s1 +

∂u(A)

∂y
s2 +

∂u(A)

∂z
s3.

The directional derivative of the scalar field u(x, y, z) in the point A along
the vector s determines the slope of the scalar field u(x, y, z) in the point
A along the vector s, i.e. rate of change of the scalar field u(x, y, z) in the
point A in the direction of the vector s.
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Definition

The vector function

grad u =
∂u(x, y, z)

∂x
i +

∂u(x, y, z)
∂y

j +
∂u(x, y, z)

∂z
k =

(
∂u(x, y, z)

∂x
,

∂u(x, y, z)
∂y

,
∂u(x, y, z)

∂z

)
is called the gradient of the scalar field u(x, y, z).

The direction of the greatest increase of the scalar field is given by gradient of the scalar field.

• By implementation of the Hamilton operator (nabla operator)

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k =

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
we can write the gradient of the scalar field u(x, y, z) in the form

grad u = ∇u.

• The directional derivative of the scalar field u(x, y, z) in the point A along the unit vector s can be written in the form

du(A)

ds
=

∂u(A)

∂x
s1 +

∂u(A)

∂y
s2 +

∂u(A)

∂z
s3 = grad u · s.
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Theorem (Properties of the gradient)

1. Gradient of the scalar field u(x, y, z) is perpendicular to the con-
tours of the scalar field u(x, y, z) in each point A ∈ Ω.

2. Gradient of the scalar field u(x, y, z) points in the direction of the
greatest increase of the scalar field u(x, y, z). The opposite direc-
tion is the greatest rate of decrease of the scalar field u(x, y, z).

3. The value of the greatest increase of the scalar field u(x, y, z) is
equal to | grad u|.

Example

Find the directional derivative of the scalar field u = 3x2 − 4y3 + 2z4 in
the point A = [1, 2, 1] along the vector s = AB, while B = [4, 6, 6].

We need to find the values of the partial derivatives of the scalar field
u(x, y, z) in the point A.

∂u
∂x

= 6x,
∂u
∂y

= −12y2,
∂u
∂z

= 8z3,

∂u(A)

∂x
= 6,

∂u(A)

∂y
= −48,

∂u(A)

∂z
= 8.

To find a unit vector s in the direction of the AB vector we need to calculate

AB = B− A = (3, 4, 5),

|AB| =
√

32 + 42 + 52 =
√

50 = 5
√

2,

s =
AB
|AB| =

(
3

5
√

2
,

4
5
√

2
,

5
5
√

2

)
=

(
3
√

2
10

,
2
√

2
5

,

√
2

2

)
.

By using formula for the directional derivative we obtain

du(A)

ds
= 6 · 3

√
2

10
− 48 · 2

√
2

2
+ 8 ·

√
2

2
= −67

5

√
2.



Worksheets for Mathematics III

109 – Scalar field Řy

Example

Find the gradient of the scalar field u = x2 + y2 + z2 − 2xy + 2xz + 2yz,
the unit direction s of the greatest rate of increase of the field in the point
A = [1, 2, 1] and the greatest value of directional derivative of the scalar
field u in the point A.

We calculate the partial derivatives of the scalar field u(x, y, z).

∂u
∂x

= 2x− 2y + 2z,
∂u
∂y

= 2y− 2x + 2z,
∂u
∂z

= 2z + 2x + 2y.

Therefore the gradient vector is in the form

grad u = (2x− 2y + 2z, 2y− 2x + 2z, 2z + 2x + 2y).

Because the gradient always points to the direction of the greatest increase
of the scalar field u, we can calculate the unit vector s by

grad u(A) = (0, 4, 8),

| grad u(A)| =
√

80 = 4
√

5,

s =
grad u(A)

| grad u(A)| =
(

0,
4

4
√

5
,

8
4
√

5

)
=

(
0,

√
5

5
,

2
√

5
5

)
.

Now we are able to obtain the directional derivative
du(A)

ds
by

du(A)

ds
= grad u(A) · s = (0, 4, 8) ·

(
0,

√
5

5
,

2
√

5
5

)

= 0 +
4
√

5
5

+
16
√

5
5

= 4
√

5.

We can compare the results and confirm that for the direction of the great-
est increase of the scalar field u it holds

du(A)

ds
= | grad u(A)|.
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Exercise

Calculate directional derivative of scalar field u in the point A along the unit vector s:

a) u = 5x4 − 4xy + 2y− 7, A = [1, 1], s = −i,

b) u =
√

x2 + y2, A = [3, 4], s ‖ v = (4,−3).
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Exercise

a) Find the points where gradient of the scalar field u = x2 + 2xy + 4y2 + z2 − 4z is equal to zero.

b) Find the direction of the greatest rate of increase of the scalar field u = x2 + y2 + z2 − 1 in the point A = [0,−2, 1].
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We often use vector fields to describe different physical phenomena.
Vector field assigns to each point X = [x, y, z] in the domain Ω the
only vector f, whose components are real functions P(x, y, z), Q(x, y, z),
R(x, y, z).

Definition

Vector field on the domain Ω ⊂ R3 is given by a vector function

f(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k.

Definition

Let functions P(x, y, z), Q(x, y, z), R(x, y, z) be continuous on the do-
main Ω and X = [x, y, z] ∈ Ω be an arbitrary point. The vector field
f = (P(X), Q(X), R(X)) is said to be conservative if and only if there
exist a scalar field Φ on Ω such that

f =
(

∂Φ(X)

∂x
,

∂Φ(X)

∂y
,

∂Φ(X)

∂z

)
= grad Φ(x, y, z).

The scalar field Φ is called a scalar potential of a vector function f.

To describe a vector field we use lines of force, flow lines, etc. The vector
field f(X) always points in the direction of the tangent of such lines in each
point X ∈ Ω. See figures where you can find

• peripheral velocity of the rotational movement of the solid body

• velocity of laminar flow of the fluid
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Definition

Let vector field be given by vector function

f(X) = P(X) i + Q(X) j + R(X) k,

while functions P(X), Q(X), R(X) are continuous and have partial
derivatives on Ω.

• Divergence of the vector field f(X) is defined as a scalar field

div f(X) = ∇ · f(X) =
∂P(X)

∂x
+

∂Q(X)

∂y
+

∂R(X)

∂z
.

• Vector field , where for all X ∈ Ω holds div f(X) = 0 is called
solenoidal (divergence-free).

• Points X ∈ Ω, where div f(X) > 0 are called sources.

• Points X ∈ Ω, where div f(X) < 0 are called sinks.

• Curl of the vector field f(X) is defined as a vector field

curl f(X) = ∇× f(X) =

∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
P(X) Q(X) R(X)

∣∣∣∣∣∣∣∣
=

(
∂R
∂y
− ∂Q

∂z
,

∂P
∂z
− ∂R

∂x
,

∂Q
∂x
− ∂P

∂y

)
.

• Vector field, where for all X ∈ Ω holds curl f(X) = 0 is called
irrotational (curl-free).

We can clarify the meaning of the divergence and the curl of vector field
on the vector field of velocity v(x, y, z) of stationary flow of the fluid. Di-
vergence of the vector field v in point A describes the volume of the fluid
that flows out from unit of volume in unit of time in the neighbourhood
of point A, i.e. intensity of the source of unit volume. Curl of the vector
field v in point A defines the direction of the axis around which the fluid
rotates in the neighbourhood of point A.

Theorem

Vector field f(X) = P(X) i + Q(X) j + R(X) k is conservative on Ω if
and only if it is irrotational on Ω, i.e. curl f(X) = o.
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Example

Represent the vector field f(x, y) = (x − y) i + (x + y) j given on
Ω : x2 + y2 ≤ 4.

To represent the vector field we can choose some points in the domain Ω
and calculate appropriate values of the vector field f.

A = [1, 1] : f(A) = 0 · i + 2 · j = (0, 2)
B = [2, 0] : f(B) = 2 · i + 2 · j = (2, 2)
C = [0, 2] : f(C) = −2 · i + 2 · j = (−2, 2)
D = [−2, 0] : f(D) = −2 · i− 2 · j = (−2,−2)
E = [0,−2] : f(E) = 2 · i− 2 · j = (2,−2)
F = [−1, 1] : f(F) = −2 · i + 0 · j = (−2, 0)

The representation of the vector field is visible on following figure.
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Example

Find out if the vector field f(x, y, z) = x2i + y2j + z2k is

• solenoidal,

• irrotational.

• Find its scalar potential Φ if exists.

For the vector field f it holds
P = x2, Q = y2, R = z2,

∂P
∂x

= 2x,
∂P
∂y

= 2y,
∂P
∂z

= 2z.

• According to the definition of divergence we obtain

div f(x, y, z) = 2x + 2y + 2z,

therefore the vector field is not solenoidal. Points, where 2x + 2y + 2z > 0 are sources, while there are
sinks in points where 2x + 2y + 2z < 0.

For example the point A = [1, 1, 1] is source because div f(A) = 6 > 0. The point B = [−1,−1,−1] is sink
because div f(B) = −6 < 0.

• Based on the definition of curl we calculate

curl f(X) =

∣∣∣∣∣∣∣∣∣
i j k
∂

∂x
∂

∂y
∂

∂z
x2 y2 z2

∣∣∣∣∣∣∣∣∣ =
(

∂
(
z2)

∂y
−

∂
(
y2)

∂z
,

∂
(
x2)

∂z
−

∂
(
z2)

∂x
,

∂
(
y2)

∂x
−

∂
(
x2)

∂y

)
= o.

Therefore, the given field is irrotational and it is also conservative. That’s why we are able to find its scalar
potential.
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• To find the scalar potential Φ we use its properties from the definition of the scalar potential

P =
∂Φ
∂x

, Q =
∂Φ
∂y

, R =
∂Φ
∂z

.

Hence

Φ =
∫

P dx =
∫

x2 dx =
x3

3
+ K1(y, z),

where K1(y, z) is an arbitrary function depending on variables y, z. To find it we derivate the scalar poten-
tial Φ with respect to y and realise that

∂K1(y, z)
∂y

= y2

from which we obtain

K1(y, z) =
∫

y2 dy =
y3

3
+ K2(z),

where K2(z) is an arbitrary function depending only on variable z, which must fulfil K′2(z) = z2 based on
the partial derivative of potential Φ with respect to z. Therefore

K2(z) =
∫

z2 dz =
z3

3
+ C,

where C is an arbitrary real constant. Finally, we obtained scalar potential in the form

Φ(X) =
x2 + y2 + z2

3
+ C.
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Example

Vector field of the force F in each point X = [x, y, z] points to the co-

ordinates origin and its magnitude is equal to |F| = 1
ρ2 , where ρ is the

distance between the point and the coordinate origin. Find out if the
field is conservative.

The force F has the same direction as the position vector r of an arbitrary
point X,

r = OX = X−O = (x, y, z)

but the opposite orientation. Therefore

F = (−cx,−cy,−cz),

where c > 0 is an arbitrary constant. The distance of the point X = [x, y, z]
is equal to

ρ = |OX| =
√

x2 + y2 + z2.

The magnitude of the force is given and is equal to

|F| = 1
ρ2 =

1
x2 + y2 + z2

from which we obtain

c =
1√

(x2 + y2 + z2)
3

.

We have found the components of the force vector

F = − x√
(x2 + y2 + z2)

3
i− y√

(x2 + y2 + z2)
3

j− z√
(x2 + y2 + z2)

3
k.

According to the definition of the curl we calculate

curl F =

(
3yz
√

x2 + y2 + z2

(x2 + y2 + z2)
3 −

3yz
√

x2 + y2 + z2

(x2 + y2 + z2)
3

)
i

+

(
3xz
√

x2 + y2 + z2

(x2 + y2 + z2)
3 − 3xz

√
x2 + y2 + z2

(x2 + y2 + z2)
3

)
j

+

(
3xy

√
x2 + y2 + z2

(x2 + y2 + z2)
3 − 3xy

√
x2 + y2 + z2

(x2 + y2 + z2)
3

)
k = o.

The vector field is irrotational and therefore it is also conservative.
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Exercise

Find the divergence and the curl of the vector field f:

a) f(x, y, z) = x2yz i + xy2z j + xyz2 k,

b) f(x, y, z) = grad
(
x3 + y3 + z3).
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Exercise

Find out if following vector field f is solenoidal, irrotational and conservative, find its scalar
potential Φ if exists:

a) f(x, y, z) = (y + z) i + (x + z) j + (x + y) k,

b) f(x, y, z) = grad(xyz).
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Definition

Let x = x(t), y = y(t), z = z(t) be continuous functions for t ∈ [a, b] . The curve k with paramet-
rical equations

x = x(t),
y = y(t),
z = z(t), t ∈ [a, b]

is called positively oriented with respect to the parameter t, if and only if its points are ordered
so that for arbitrary values t1, t2 ∈ [a, b] , t1 < t2, the point M1 = [x(t1), y(t1), z(t1)] lies before
the point M2 = [x(t2), y(t2), z(t2)], i.e.

∀t1, t2 ∈ [a, b] : t1 < t2 ⇔ M1 ≺ M2.

Reversely,
∀t1, t2 ∈ [a, b] : t1 < t2 ⇔ M2 ≺ M1,

the curve is called negatively oriented with respect to the parameter t.

Remark

The symbol ≺means ”precedes” or ”lies before”.

Definition

If the curve k is positively oriented with respect to the parameter t ∈ [a, b] , then the point
A = [x(a), y(a), z(a)] is called the starting point of the curve and the point B = [x(b), y(b), z(b)]
is called the ending point of the curve.
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Definition

Let curve k is given by parametrical equations

x = x(t),
y = y(t),
z = z(t), t ∈ [a, b]

with starting point A = [x(a), y(a), z(a)] and ending point B = [x(b), y(b), z(b)].

• The curve is called closed, if A ≡ B.

• The curve is called smooth on [a, b], if there exists continuous derivatives of parametrical equations

ẋ = ẋ(t),
ẏ = ẏ(t),
ż = ż(t)

and ∀t ∈ [a, b] : (ẋ(t), ẏ(t), ż(t)) 6= (0, 0, 0).

• The curve is called piecewise smooth on [a, b], if it is smooth on [a, b] except for a finite number of
points ti ∈ [a, b] , i = 1, . . . , n.

• The curve is called simple on [a, b], if it doesn’t intersect itselfs, i.e.

∀t1, t2 ∈ (a, b) : t1 6= t2 ⇒ M1 6= M2.
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Example

Write parametrization of the line segment AB, where A = [0, 0], B = [1, 1].

There are infinitely many possibilities how to write down a parametrization. For example:

1. If we consider the given segment as a part of graph of function y = x, we can put t = x = y and obtain

x = t,
y = t, t ∈ [0, 1] .

The curve is positively oriented. For t = 0 we obtain A = [x(0), y(0)] = [0, 0] and analogically for t = 1
we obtain B = [x(1), y(1)] = [1, 1].

2. It is not necessary to keep x = t. We can use parametrization

x = r− 1,
y = r− 1, r ∈ [1, 2] .

which is also positively oriented. We obtain A = [x(1), y(1)] = [0, 0] , while B = [x(2), y(2)] = [1, 1].

3. If we use following parametrization

x = −s,
y = −s, s ∈ [−1, 0] .

The curve is then negatively oriented. In such situation B = [x(−1), y(−1)] = [1, 1] , while
A = [x(0), y(0)] = [0, 0].
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Parametrizations of the line segment between points A = [a1, a2, a3], B = [b1, b2, b3] are in the form

x = a1 + u1 · t,
y = a2 + u2 · t,
z = a3 + u3 · t, t ∈ [0, 1] .

where u = AB = (u1, u2, u3) is the vector parallel to the line segment AB.

Example

Write parametrization of the line segment between points A = [1, 2, π] and B = [8,−12, 0].

We compute vector
AB = B− A = (7,−14,−π) .

The parametrical equations are

x = 1 + 7t,
y = 2− 14t,
z = π − πt, t ∈ [0, 1] .
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Parametrical equations of the circle

(x−m)2 + (y− n)2 = r2, r > 0,

with the center in the point C = [m, n] and radius r are in the form

x = m + r cos t,
y = n + r sin t, t ∈ [0, 2π] .

Example

Compute parametrization of the circle with the center in the origin and
radius r = 2 for y ≥ 0. The starting point of the curve is A = [2, 0].

A
x−2 −1 1 2

y

1

2

0

The parametrical equations are

x = 2 cos t,
y = 2 sin t, t ∈ [0, π] .

The curve is positively oriented with respect to the parameter t.

We can also express variable y from equation

x2 + y2 = 4

and obtain
y = ±

√
4− x2.

For y > 0 we consider only

y =
√

4− x2.

By putting s = x we then obtain parametrical equations of the given curve
in the form

x = s,

y =
√

4− s2, s ∈ [−2, 2] .

The curve is negatively oriented with respect to parameter s.
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Parametrical equations of the ellipse

(x−m)2

a2 +
(y− n)2

b2 = 1, a, b > 0,

with the center in the point [m, n] and semi-axis a, b are in the form

x = m + a cos t,
y = n + b sin t, t ∈ [0, 2π] .

Example

Compute parametrization of the curve 9x2 + 4y2 + 18x− 32y + 37 = 0.

We can find the center of the ellipse and sizes of the semi-axes by following
calculation

9x2 + 4y2 + 18x− 32y + 37 = 0

9
(

x2 + 2x
)
+ 4

(
y2 − 8y

)
= −37

9
(

x2 + 2x + 1
)
− 9 + 4

(
y2 − 8y + 16

)
− 64 = −37

9(x + 1)2 + 4(y− 4)2 = 36
(x + 1)2

4
+

(y− 4)2

9
= 1

The center of the ellipse is in point C = [−1, 4] and semi-axis are a = 2,
b = 3

C

x−4 −3 −2 −1 1 2

y

2

3

5

6

7

1

4

0

and the parametrical equations are

x = −1 + 2 cos t,
y = 4 + 3 sin t, t ∈ [0, 2π] .
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We need to divide our domain (the curve k) into small elements. Let us
consider the simple smooth curve k with parametrization

x = x(t),
y = y(t),
z = z(t), t ∈ [a, b]

positively oriented with respect to the parameter t. We divide interval [a, b]
by sequence of points

a = t0 < t1 < · · · < tn = b

into n partial curves k1, k2, . . . , kn according to the figure

x(a) x(b)

y(a)

y(b)

xi−1 xi

yi−1

yi

ki

A

B

Mi

x

y

For each i = 1, . . . , n we denote by ∆si the length of each element ki and we
choose an arbitrary point Mi = [x(ti), y(ti), z(ti)] in each element ki. The
curve k lies within a domain Ω and we consider a bounded continuous
scalar function u(X) = u(x, y, z) defined for each X ∈ Ω. Now we can
create the sum of products

n

∑
i=1

u(Mi) · ∆si =
n

∑
i=1

u(x(ti), y(ti), z(ti)) · ∆si

and define the line integral of a scalar field.

Definition

If there exists

lim
n

∑
i=1

u(x(ti), y(ti), z(ti)) · ∆si

for n → ∞ and ∆si → 0 we call it the line integral of a scalar field
u(x, y, z) along the curve k and denote it∫

k

u(x, y, z)ds.
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Theorem (Properties of the line integral of a scalar field)

1.
∫
k

c u(X)ds = c
∫
k

u(X)ds,

2.
∫
k

(u(X) + v(X))ds =
∫
k

u(X)ds +
∫
k

v(X)ds,

3.
∫
k

u(X)ds =
∫
k1

u(X)ds +
∫
k2

u(X)ds,

where c ∈ R, k1, k2 are non-overlapping curves such that curve k fulfils k = k1 ∪ k2 and
u(X), v(X) are bounded continuous scalar functions for all X ∈ Ω that contains the curve k.
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Remark

The line integral of the scalar field doesn’t depend on the orientation of
the curve, because the lengths of all components ∆si are always positive.

The element of the curve ds in the three-dimensional space is the body
diagonal of the rectangular hexahedron with sides dx, dy, dz. Therefore
we obtain

ds =
√
(dx)2 + (dy)2 + (dz)2 =

√
(ẋ(t)dt)2 + (ẏ(t)dt)2 + (ż(t)dt)2

=
√
(ẋ(t))2 + (ẏ(t))2 + (ż(t))2 dt.

The line integral of the scalar field can then be written in the form

∫
k

u(x, y, z)ds =
b∫

a

u(x(t), y(t), z(t))
√
(ẋ(t))2 + (ẏ(t))2 + (ż(t))2 dt.

That way we transform the line integral of the scalar field into the one-
dimensional definite integral.

Example

Calculate the line integral
∫
k

(x + z)ds along the line segment between

points A = [1, 2, 3], B = [3, 2, 1].

We create the parametrization of the line segment

x = 1 + 2t,
y = 2,
z = 3− 2t, t ∈ [0, 1]

and calculate its derivatives

ẋ = 2, ẏ = 0, ż = −2.

We express the element ds

ds =
√
(ẋ(t))2 + (ẏ(t))2 + (ż(t))2 dt =

√
8 dt = 2

√
2 dt

to calculate the line integral

∫
k

(x + z)ds =
1∫

0

(1 + 2t + 3− 2t) · 2
√

2 dt = 8
√

2
1∫

0

dt = 8
√

2.
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If we consider just the two-dimensional problem, i.e. the curve is in
xy-plane, the element

ds =
√
(ẋ(t))2 + (ẏ(t))2 dt

and the line integral of the scalar field is then in the form

∫
k

u(x, y) ds =
b∫

a

u(x(t), y(t))
√
(ẋ(t))2 + (ẏ(t))2 dt.

Example

Calculate the line integral
∫
k

y2 ds, where k is a circle with the center in

the origin of coordinates and radius 2.

The parametrical equations of the circle are

x = 2 cos t,
y = 2 sin t, t ∈ [0, 2π] .

We calculate derivatives

ẋ = −2 sin t,
ẏ = 2 cos t

and the element of the curve

ds =
√
(ẋ(t))2 + (ẏ(t))2 dt =

√
4 sin2 t + 4 cos2 t dt =

√
4 dt = 2 dt.

We are able to calculate the integral

∫
k

y2 ds =
2π∫
0

4 sin2 t · 2 dt = 8
2π∫
0

1
2
(1− cos(2t)) dt

= 4
[

t− 1
2

sin(2t)
]2π

0
= 8π.
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Example

Calculate the line integral
∫
k

y ds, where k is a part of the function y = x3

between points A = [0, 0], B = [1, 1].

Parametrical equations of function y = x3, x ∈ [0, 1] are

x = t,
y = t3, t ∈ [0, 1] .

We need to express a derivative of parametrical equations

x = 1,
y = 3t2

an element of the curve

ds =
√

1 + (3t2)
2 dt =

√
1 + 9t4 dt

to calculate the integral

∫
k

y ds =
1∫

0

t3
√

1 + 9t4 dt.

In such integral we can use substitution

1 + 9t4 = z
36t3 dt = dz

to obtain

∫
k

y ds =
1

36

10∫
1

√
z dz =

1
36
· 2

3

[√
z3
]10

1
=

1
54

(
10
√

10− 1
)

.
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Exercise

Compute the line integrals of scalar fields along given curves:

a)
∫
k

z2

x2 + y2 ds, k is one thread of the spiral x = cos t, y = sin t, z = t, t ∈ [0, 2π],

b)
∫
k

x ds, k is a line segment between points A = [0, 0], B = [1, 2].
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Exercise

Compute the line integrals of scalar fields along given curves:

a)
∫
k

x2 ds, k is an upper half of the circle x2 + y2 = a2, a > 0,

b)
∫
k

x2 ds, k : y = ln x, x ∈ [1, 3].
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Let function f (x, y) ≥ 0 be continuous on a domain Ω that contains the
curve k. We consider the cylindrical surface between the plane z = 0
and z = f (x, y) above the curve k, see figure. The area of such a surface
is

A =
∫
k

f (x, y)ds.

This is the geometrical meaning of the line integral of a scalar field.

Example

Calculate the area of the cylindrical surface x2 + y2 = r2 bounded by
z ≥ 0 and z ≤ x.

The curve k is a part of the circle x2 + y2 = r2 for x ≥ 0. Therefore, the
parametrization of the curve k is in the form

x = r cos t,

y = r sin t, t ∈
[
−π

2
,

π

2

]
.

We express derivatives of the parametric equations

ẋ = −r sin t,
ẏ = r cos t

and the element of the curve is then given by

ds =
√
(ẋ(t))2 + (ẏ(t))2 dt =

√
r2 sin2 t + r2 cos2 t dt = r dt.

Now we can calculate the area of given cylindrical surface

A =
∫
k

x ds =
π/2∫
−π/2

r cos t · r dt = r2[sin t]π/2
−π/2 = 2r2.
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Exercise

Calculate the area of cylindrical surfaces bounded by given conditions:

a) x2 + y2 = r2, z ≥ 0, z ≤ xy
2r

, x ≥ 0, y ≥ 0,

b) 9y2 = 4(x− 1)3, z ≥ 0, z ≤ 2−
√

x.
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Exercise

Calculate the area of cylindrical surfaces bounded given conditions:

a) y2 = 2x, z ≥ 0, z ≤
√

2x− 4x2,

b) y =
3
8

x2, z ≥ 0, z ≤ x, x ≥ 0, y ≤ 6.
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Let k be simple, piecewise smooth curve. The length of the curve is
numerically equal to the area of the cylindrical surface above the curve k
that is bounded by planes z = 0 and z = 1. Hence, by letting f (x, y) = 1

in formula for area of a cylindrical region A =
∫
k

f (x, y)ds we obtain

L =
∫
k

ds.

Remark

The length of the curve k in three dimensional space can be calculated
using the same formula

L =
∫
k

ds.

Example

Calculate the length of one period of the cycloid x = a(t− sin t),
y = a(1− cos t), t ∈ [0, 2π], a > 0.

We need to calculate the derivatives of the parametric equations of the
cycloid

ẋ = a(1− cos t),
ẏ = a sin t.

Further, we use them to express the element of the curve

ds =
√
(ẋ(t))2 + (ẏ(t))2 dt =

√
a2(1− cos t)2 + a2 sin2 t dt

= a
√

1− 2 cos t + cos2 t + sin2 t dt = a
√

2− 2 cos t dt =
√

2a
√

1− cos t dt.

Now, we need to use trigonometric identity sin2 x =
1
2
(1 − cos 2x) and

obtain

ds =
√

2a

√
2 sin2 t

2
dt = 2a sin

t
2

dt.

Finally, we are able to calculate the length of the curve

L =
∫
k

ds =
2π∫
0

2a sin
t
2

dt = 2a
[
−2 cos

t
2

]2π

0
= −4a · (−1− 1) = 8a.
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Exercise

Calculate the lengths of the given curves:

a) cardioid with parametrical equations x = 2a cos t− a cos 2t, y = 2a sin t− a sin 2t, t ∈ [0, 2π], a > 0,

b) y =
1
2

ln x, z =
1
2

x2, x ∈ [1, 2].



Worksheets for Mathematics III

139 – Practical applications of line integral, length of a curve Řy

Exercise

Calculate the lengths of the curves:

a) y = 1− ln cos x, x ∈
[
0,

π

4

]
,

b) y =
1
2

x2, z =
1
6

x3, x ∈ [0, 1].
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Let k be a simple, piecewise smooth curve and continuous function
ρ(x, y, z) > 0 be its linear density. The mass of a curve (e.g. mass of
a wire) is given by the line integral of a scalar field

m =
∫
k

ρ(x, y, z)ds.

Example

Calculate the mass of one thread of the screw line k : x = cos t, y = sin t,
z = t, t ∈ [0, 2π] if its density is given by ρ = x2 + y2 + z2.

Derivatives of the parametric equations are in the form

ẋ = − sin t,
ẏ = cos t,
ż = 1.

We express element of the curve

ds =
√
(ẋ(t))2 + (ẏ(t))2 + (ż(t))2 dt =

√
sin2 t + cos2 t + 12 dt =

√
2 dt.

Now we can use the line integral and calculate the mass of the given curve

m =
∫
k

(
x2 + y2 + z2

)
ds =

√
2

2π∫
0

(
cos2 t + sin2 t + t2

)
dt

=
√

2
2π∫
0

(
t2 + 1

)
dt =

√
2
[

t3

3
+ t
]2π

0

=
√

2
(

8π3

3
+ 2π

)
= 2
√

2π

(
4
3

π3 + 1
)

.
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Exercise

a) Calculate the mass of one quarter of the circle x = a sin t, y = a cos t, t ∈
[
0,

π

2

]
if the density in each point is equal to its y-coordinate.

b) Calculate the mass of the parabola y =
1
2

x2 between the points A =

[
1,

1
2

]
and B = [2, 2]. The density ρ =

y
x

.
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Exercise

a) Calculate the mass of the curve y = ln x, where x ∈ [1, 2]. The density at each point is equal to the square of its x-coordinate.

b) Calculate the mass of the catenary y =
a
2

(
e

x
a + e−

x
a

)
for x ∈ [0, a], a > 0. The density ρ =

a
y

.
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Let us consider the simple smooth curve k with parametrization

x = x(t),
y = y(t),
z = z(t), t ∈ [a, b]

that is positively oriented with respect to the parameter t. The curve lies
within the domain Ω.
We divide interval [a, b] by sequence of points

a = t0 < t1 < · · · < tn = b

into n partial curves k1, k2, . . . , kn. We are also able to construct positively
oriented unitary tangential vector τi(Mi) at each point Mi according to the
figure.

B

x(a) x(b)xi−1 xi

τi
A Mi

x

y

Furthermore, we consider bounded continuous vector field

F(X) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k

defined for each X ∈ Ω. We create scalar products of the vector field
and the positively oriented tangential vector of each element of the curve
F(Mi) · ∆si, where ∆si = ∆siτi. Now we can create sum of such products

n

∑
i=1

F(Mi) · ∆si =
n

∑
i=1

F(x(ti), y(ti), z(ti)) · ∆siτi

and define the line integral of a vector field.

Definition

If there exists

lim
n

∑
i=1

F(x(ti), y(ti), z(ti)) · ∆siτi

for n → ∞ and ∆si → 0, we call it the line integral of a vector field
F(x, y, z) along the curve k+ and denote it∫

k+

F(x, y, z) · ds,

where k+ denotes curve k positively oriented with respect to parameter
t. While k− would denote curve k negatively oriented with respect to
parameter t.
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Remark

The line integral of the vector field depends on the orientation of the
curve k, because coordinates of the unitary tangential vectors τi depend
on the orientation of the curve.

To derive the form of the line integral of the vector field, we need to express
the inner product

F(x, y, z) · ds = (P(x, y, z), Q(x, y, z), R(x, y, z)) · (dx, dy, dz)

= P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dz

and the differentials dx = ẋ(t) dt, dy = ẏ(t) dt, dz = ż(t) dt by using
parametrization of the curve.

The line integral of the vector field then can be written in the form

∫
k

F(x, y, z) · ds = ε

b∫
a

[P(x(t), y(t), z(t))ẋ(t) + Q(x(t), y(t), z(t))ẏ(t)

+R(x(t), y(t), z(t))ż(t)] dt,

where ε = 1 in case of positively oriented curve k with respect to the
parameter t, while ε = −1 in case of negatively oriented curve k.

This way we transform the line integral of the vector field into the one-
dimensional definite integral, similarly to the case of the line integral of
a scalar field.

Theorem (Properties of the line integral of a vector field)

1.
∫
k

c F(X) · ds = c
∫
k

F(X) · ds,

2.
∫
k

(F(X) + G(X)) · ds =
∫
k

F(X) · ds +
∫
k

G(X) · ds,

3.
∫
k

F(X) · ds =
∫
k1

F(X) · ds +
∫
k2

F(X) · ds,

4.
∫
k+

F(X) · ds = −
∫
k−

F(X) · ds.

where c ∈ R, k1, k2 are non-overlapping curves such that curve k ful-
fils k = k1 ∪ k2 (considering the same orientation of these curves) and
F(X), G(X) are bounded continuous vector functions for all X ∈ Ω that
contains the curve k.
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Example

Calculate the line integral of the vector field F = (x, y, z) along the curve k, that is one thread of
the spiral x = 2 cos t, y = 2 sin t, z = 3t, t ∈ [0, 2π] . The curve is positively oriented with respect
to the parameter t.

We express derivatives of parametrization equations

ẋ = −2 sin t
ẏ = 2 cos t
ż = 3

and we can calculate the integral∫
k

F(x, y, z) · ds =
∫
k

x dx + y dy + z dz

=

2π∫
0

[2 cos t · (−2 sin t) + 2 sin t · 2 cos t + 3t · 3]dt

=

2π∫
0

[−4 sin t cos t + 4 sin t cos t + 9t]dt =
2π∫
0

9t dt =
9
2

[
t2
]2π

0
= 18π2.
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If we consider the two-dimensional problem, i.e. the curve is in
xy-plane, the vector field F = (P(x, y), Q(x, y)) and the tangential vec-
tor of the element

ds = (dx, dy) = (ẋ(t)dt, ẏ(t)dt),

the line integral of the vector field is then in the form

∫
k

F(x, y) · ds = ε

b∫
a

[P(x(t), y(t))ẋ(t) + Q(x(t), y(t))ẏ(t)]dt.

Example

Calculate the line integral
∫
k

(x + y)dx + (x− y)dy, where

k : y =
1
x

, x ∈ [2, 3] . The starting point of the curve k is A =

[
2,

1
2

]
.

Parametrical equations of the curve k are

x = t,

y =
1
t

, t ∈ [2, 3] .

The curve is positively oriented with respect to the parameter t. We calcu-
late the derivatives

ẋ = 1,

ẏ = − 1
t2

and the integral

∫
k

(x + y)dx + (x− y)dy =

3∫
2

[(
t +

1
t

)
+

(
t− 1

t

)
·
(
− 1

t2

)]
dt

=

3∫
2

[
t +

1
t
− 1

t
+

1
t3

]
dt =

3∫
2

(
t +

1
t3

)
dt =

[
t2

2
− 1

2t2

]3

2

=
9
2
− 1

18
− 2 +

1
8
=

185
72

.
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Exercise

Compute the line integrals of vector fields along given curves:

a)
∫
k

x dx− y dy + z dz, k is an oriented line segment AB : A = [1, 1, 1], B = [4, 3, 2],

b)
∫
k

y dx + x dy, k is one quarter of the circle x = a cos t, y = a sin t, a > 0, t ∈
[
0,

π

2

]
with starting point A [a, 0].
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Exercise

Compute the line integrals of vector fields along given curves:

a)
∫
k

(xy− 1) dx + x2y dy, k is an arc of the ellipse x = cos t, y = 2 sin t from the starting point A = [1, 0] to the end point B = [0, 2],

b)
∫
k

xy dx + (y− x) dy, k is a part of the parabola y2 = x from the starting point A = [0, 0] to the end point B = [1, 1].



Worksheets for Mathematics III

149 – Green’s theorem Řy

Green’s theorem expresses the relation between a line integral of a vec-
tor field along a plane (two-dimensional) closed curve and a double inte-
gral.

Definition

Let Ω be a domain in a plane bounded by a simple closed curve k. The
curve k is orientated positively if traveling on the curve we always
have got the domain Ω on the left side, see figure.

Remark

Positive orientation of the closed curve means traveling in a counter-
clockwise direction, while negative orientation means traveling in a
clockwise direction.

We denote the line integral of a vector field F(X) along a closed curve k
by ∮

k

F(X) · ds.

Theorem (Green’s theorem)

Let two-dimensional vector field

F(x, y) = P(x, y)i + Q(x, y)j

have continuous partial derivatives on the plane domain Ω, which is
bounded by simple piecewise smooth closed positively orientated curve
k. Then∮

k

P(x, y)dx + Q(x, y)dy =
∫∫
Ω

[
∂Q(x, y)

∂x
− ∂P(x, y)

∂y

]
dx dy.

The Green’s theorem transforms the line integral of a vector field along
a plane closed curve to a double integral over the domain Ω, that is
bounded by the curve k. It is especially useful in situations when k is
a polygon and we would have to calculate as many line integrals as the
lines the polygon consists of.
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Example

Calculate the integral
∮
k

(2xy− 5y)dx +
(

x2 + y
)

dy, where k is the positively orientated circle

with the center in the origin of coordinates and radius r.

The curve k is simple and closed. Also both functions P(x, y) = 2xy− 5y and Q(x, y) = x2 + y fulfil
assumptions of the Green’s theorem. We calculate derivatives

∂P(x, y)
∂y

= 2x− 5

∂Q(x, y)
∂x

= 2x

and evaluate the integral by using Green’s theorem.∮
k

(2xy− 5y) dx + (x2 + y) dy =
∫∫
Ω

(2x− (2x− 5)) dx dy =
∫∫
Ω

5 dx dy = 5πr2.
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Example

Calculate the integral
∮
k

(
x2 + y2

)
dx + (x + y)2 dy, where k consists of

the sides of the triangle ABC: A = [1, 1], B = [1, 3], C = [3, 3]. The curve
is positively orientated.

All assumptions of the Green’s theorem are fulfilled.

P = x2 + y2, Q = (x + y)2,
∂P(x, y)

∂y
= 2y,

∂Q(x, y)
∂x

= 2(x + y).

The domain is shown on following figure.

We calculate the double integral as a normal one with respect to the x-axis
with inequalities for Ω in the form

Ω : 1 ≤ x ≤ 3,
x ≤ y ≤ 3.

By using Green’s theorem we obtain

∮
k

(
x2 + y2

)
dx + (x + y)2 dy =

∫∫
Ω

(2x + 2y− 2y)dx dy = 2
3∫

1

dx
3∫

x

x dy

= 2
3∫

1

x[y]3x dx = 2
3∫

1

(
3x− x2

)
dx = 2

[
3
2

x2 − x3

3

]3

1
=

20
3

.
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Exercise

Calculate integral
∮
k

(
x2 + y2

)
dy along sides of the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 4 by using the

Green’s theorem. The curve is positively orientated.
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Exercise

Calculate integral
∮
k

2y dx− (x + y)dy by using the Green’s theorem. The curve k consists of the

sides of the triangle x ≥ 0, y ≥ 0, x + 2y ≤ 4. The curve is positively orientated.
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Exercise

Calculate integral
∮
k

(x + y)dx− (x− y)dy along the positively orientated ellipse 4x2 + 9y2 = 36 by using the Green’s theorem.



Worksheets for Mathematics III

155 – Green’s theorem Řy

Exercise

Calculate integral
∮
k

(ex sin y− 16y) dx + (ex cos y + 16) dy, where k is positively orientated circle x2 + y2 = 2x by using the Green’s theorem.
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We can use another method of calculation of the line integral of a vector field in situations when
the value of the integral doesn’t depend on an integration curve and depends only on its starting
and ending point.

Definition

Let points A, B ∈ Ω. Let the vector function F(X) be continuous over the domain Ω. If the value
of the line integral of the vector field ∫

k

F(X) · ds

doesn’t depend on the integration curve k with starting point A and ending point B that lies
within the domain Ω, we say the integral is path independent between points A, B.
If this property is fulfilled for arbitrary points A, B ∈ Ω, we say integral is path independent
over Ω.
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Theorem (Path independence of line integral)

Let F(X) = P(X)i + Q(X)j + R(X)k have continuous partial derivatives in a domain Ω. Let a curve k lie within Ω, A be the starting point of the curve
k, while B be its ending point. Then:

1. The line integral
∫
k

F(X) · ds =
∫
k

P(X)dx + Q(X)dy + R(X)dz is path independent over Ω if and only if there exists some scalar function

Φ(x, y, z) over Ω such that F(x, y, z) = grad Φ(x, y, z), i.e.

P =
∂Φ
∂x

, Q =
∂Φ
∂y

, R =
∂Φ
∂z

.

The vector field F(x, y, z) is a conservative field, function Φ(x, y, z) is a scalar potential.

2. The line integral
∫
k

F(X) · ds =
∫
k

P(X)dx + Q(X)dy + R(X)dz is path independent over Ω if and only if curl F(X) = o, i.e.

∂Q
∂x

=
∂P
∂y

,
∂R
∂y

=
∂Q
∂z

,
∂P
∂z

=
∂R
∂x

.

3. In such case, the line integral of the vector field F(X) along a curve k from the starting point A to the ending point B is given by the difference of
the values of scalar potential in the end point B and starting point A :∫

k

F(X) · ds =
∫
k

P(X)dx + Q(X)dy + R(X)dz = Φ(B)−Φ(A).

4. Hence, if the line integral is path independent and the curve k is closed then∮
k

F(X) · ds = 0.
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If the problem is considered only in xy-plane, the path independent line integral of the vector
field is given by ∫

k

F(X) · ds =
∫
k

P(x, y)dx + Q(x, y)dy = Φ(B)−Φ(A).

Two-dimensional vector field is conservative if and only if

∂P
∂y

=
∂Q
∂x

.

We will show the way of calculation of the scalar potential Φ(x, y) at following examples.
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Example

Calculate the integral
∫
k

(
3x2 − 2xy + y2

)
dx −

(
x2 − 2xy + 3y2

)
dy, where k is oriented line segment AB,

A = [1, 2], B = [3, 1].

The test condition
∂P
∂y

= −2x + 2y =
∂Q
∂x

is fulfilled.

To find the potential we first integrate P(x, y) = 3x2 − 2xy + y2 with respect to x.

Φ(x, y) =
∫

P(x, y)dx =
∫ (

3x2 − 2xy + y2
)

dx = x3 − x2y + xy2 + K(y),

where K(y) is a function of variable y. We determine it by setting the partial derivative
∂Φ
∂y

equal to Q(x, y). We

have
∂Φ
∂y

= −x2 + 2xy + K′(y) = −x2 + 2xy− 3y2 = Q(x, y).

Hence, K′(y) = −3y2 and

K(y) = −
∫

3y2 dy = −y3 + C,

where C is a real constant. The scalar potential is in the form

Φ(x, y) = x3 − x2y + xy2 − y3 + C.

We calculate the integral according to path independence theorem:

Φ(B) = 33 − 32 · 1 + 3 · 12 − 13 = 20, Φ(A) = 13 − 12 · 2 + 1 · 22 − 23 = −5,∫
k

(
3x2 − 2xy + y2

)
dx−

(
x2 − 2xy + 3y2

)
dy = Φ(B)−Φ(A) = 25.
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Example

Calculate the integral
∮
k

x2 dx + y2 dy along the positively orientated

closed curve k : x2 + y2 = r2.

Functions P = x2 and Q = y2 fulfil assumptions of path independence
theorem. Partial derivatives

∂P
∂y

=
∂Q
∂x

= 0.

Hence, the integral is path independent. The curve is closed. Therefore,
the integral must be equal to zero.∮

k

x2 dx + y2 dy = 0
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Example

Calculate the integral
∫
k

(2x + yz)dx +
(

xz + z2
)

dy + (xy + 2yz)dz

from the starting point A = [1, 1, 1] to the ending point B = [1, 2, 3].

We determine functions P, Q, R and all needed partial derivatives:

P(x, y, z) = 2x + yz,
∂P(x, y, z)

∂y
= z,

∂P(x, y, z)
∂z

= y,

Q(x, y, z) = xz + z2,
∂Q(x, y, z)

∂x
= z,

∂Q(x, y, z)
∂z

= x + 2z,

R(x, y, z) = xy + 2yz,
∂R(x, y, z)

∂x
= y,

∂R(x, y, z)
∂y

= x + 2z.

We can see that the test conditions are fulfilled

∂Q
∂x

=
∂P
∂y

,
∂R
∂y

=
∂Q
∂z

,
∂P
∂z

=
∂R
∂x

.

Hence, curl F = o and integral is path independent.
To find the scalar potential Φ we use its properties from the definition of
the scalar potential

P =
∂Φ
∂x

, Q =
∂Φ
∂y

, R =
∂Φ
∂z

.

Hence,

Φ =
∫

P dx =
∫
(2x + yz)dx = x2 + xyz + K1(y, z),

where K1(y, z) is an arbitrary function depending on variables y, z. We de-

termine it by setting the partial derivative
∂Φ
∂y

equal to Q.

We obtain
∂Φ
∂y

= xz +
∂K1(y, z)

∂y
= xz + z2 = Q

and
K1(y, z) =

∫
z2dy = yz2 + K2(z),

where K2(z) is an arbitrary function depending only on variable z. We
have

Φ = x2 + xyz + yz2 + K2(z).

We use equation
∂Φ
∂z

= R and we obtain

xy + 2yz + K′2(z) = xy + 2yz.

Integrating this equation we get

K2(z) =
∫

0 dz = C,

where C is an arbitrary real constant. Finally, we obtained scalar potential
in the form

Φ(X) = x2 + xyz + yz2 + C.

We calculate the integral according to path independence theorem:

Φ(B) = 12 + 1 · 2 · 3 + 2 · 32 = 25, Φ(A) = 12 + 1 · 1 · 1 + 1 · 12 = 3,∫
k

(2x + yz)dx +
(

xz + z2
)

dy + (xy + 2yz)dz = Φ(B)−Φ(A) = 22.
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Exercise

Prove that following integrals are path independent. Then, calculate them if A is the starting point and B is the ending point.

a)
∫
k

x dx + y dy
x2 + y2 , A = [1, 2], B = [2, 3]

b)
∫
k

(
2y− 6xy3

)
dx +

(
2x− 9x2y2

)
dy, A = [1, 1], B = [4, 1]
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Exercise

Prove that following integrals are path independent. Then, calculate them if A is the starting point and B is the ending point.

a)
∫
k

yz dx + xz dy + xy dz, A = [2, 2, 2], B = [2, 3, 4]

b)
∫
k

dx + 2 dy + 3 dz
x + 2y + 3z

, A = [0, 1, 0], B = [1, 0, 1]
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Suppose an object moving in a force field F along a curve k. Work done
by the force F is then given by the line integral of a vector field

W =
∫
k

F · ds.

Example

Calculate the work done by the force field F = (xy, x + y) on an object
moving along the line segment AB from the point A = [0, 0] to the point
B = [1, 1].

We describe the line segment by parametrization

x = t,
y = t, t ∈ [0, 1]

The curve is positively oriented with respect to the parameter t. We calcu-
late the derivatives

ẋ = 1,
ẏ = 1

and calculate the work by using line integral of a vector field

W =
∫
k

F · ds =
∫
k

xy dx + (x + y)dy

=

1∫
0

(
t2 + 2t

)
dt =

[
t3

3
+ t2

]1

0
=

1
3
+ 1 =

4
3

.
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Exercise

a) Calculate the work done by the force field F = (xy, x + y) on an object moving along the curve k : x = y2 from the point A = [0, 0] to the point
B = [1, 1].

b) Calculate the work done by the force field F = (x + y, 2x) on an object moving along the closed curve k : x2 + y2 = r2 in a positive direction.
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Exercise

a) Calculate the work done by the force field F =
(

x2, y2, z2
)

on an object moving around the screw line k : x = cos t, y = sin t, z = t, t ∈
[
0,

π

2

]
in

positive direction with respect to the parameter t.

b) Calculate the work done by the force field F = grad(Φ), Φ = ln
(

x2 + y2
)
− arctan

x
y

on an object moving from the point A = [1, 1] to the point

B =
[√

2,
√

2
]

.
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