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1 ROOT-FINDING FOR NON-LINEAR EQUATIONS

1 Root-finding for non-linear equations

Given a continuous function y = f (x), we find x̃ ∈ D f such that

f (x̃) = 0.

The value x̃ is called root or zero of the function f .

1.1 Separation of roots

At first we have to determine number of roots and their positions, i.e. we need to find such
intervals that each of these includes only one root. We can use the following theorem.

Theorem

If the function f is continuous on the interval [a, b] and

f (a) · f (b) < 0

then there is x̃ ∈ (a, b) such that f (x̃) = 0.

There are several ways how to find intervals such that each one of these includes only one
root.

• We plot the graph of the function f and find points of intersection of this graph and
the x-axis.

f (x)

xa bx̃

−

+

• We convert the equation f (x) = 0 into a form h(x) = g(x) and we find points of
intersection of graphs of functions h and g.

h(x) g(x)

xa bx̃

• We tabulate values of the function f a find where their signs change.
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1 ROOT-FINDING FOR NON-LINEAR EQUATIONS

Example 1

Separate all roots of the equation

x3 − ln(10− x) = 0.

We convert the given equation into such form to be able to plot graphs of functions on both
sides of this equation.

x3 − ln(10− x) = 0

x3 = ln(10− x)

We plot graphs of functions g(x) = x3 and h(x) = ln(10− x) and find points of intersection
of these graphs.

h(x) = ln(10− x)
g(x) = x3

x−1−2 0 1 2 3 4 5 6 7 8 9x̃

It is obvious that the point of intersection is unique and lies within the interval [1, 2]. To
determine the root more precisely we tabulate function values of the function
f (x) = x3 − ln(10 − x) on this interval with the step 0.1. We round all values to two
decimal places.

x 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

f (x) -1.19 -0.85 -0.44 0.03 0.59 1.23 1.96 2.79 3.72 4.76 5.92

We can observe that sings of these function values change between 1.2 and 1.3. The func-
tion f is also evidently continuous on the mentioned interval. So the equation
x3 − ln(10− x) = 0 has unique root in the interval [1.2, 1.3].

Example 2

Separate all roots of the equation

x− 4 cos2(x) = 0.

Use the MATLAB to solve the problem.

We plot graph of the function f (x) = x− 4 cos2(x) and locate its point of intersection with
the x-axis. We plot the graph on sufficiently long interval that naturally must be a subset
of the function domain. We choose the interval [−10, 10].

>> fplot(@(x)x-4*cos(x).ˆ2,[-10,10])
>> grid on

5



1 ROOT-FINDING FOR NON-LINEAR EQUATIONS
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We can observe that all roots lie in the interval [0, 4]. So we plot the graph once more only
on this shorter interval to determine the roots position more precisely.

>> fplot(@(x)x-4*cos(x).ˆ2,[0,4])
>> grid on

0 1 2 3 4
-4

-3

-2

-1

0

1

2

There are three roots separated in intervals [1, 2], [2, 3] and [3, 4].

1.2 Bisection method

The aim of all methods is to find a sequence of numbers x(1), x(2), x(3), . . . , x(k) that con-
verges to the searched root x̃.

Assume that the root is separated in the interval [a, b]. We denote a(1) = a, b(1) = b, k = 1
in the beginning of calculations.
We determine the value x(k) as the mid-point of the interval [a(k), b(k)], i.e.

x(k) =
a(k) + b(k)

2
.

The next interval is chosen in accordace with signs of function values f (a(k)), f (x(k)),
f (b(k)).

If f (a(k)) f (x(k)) < 0 then a(k+1) := a(k), b(k+1) := x(k).

If f (x(k)) f (b(k)) < 0 then a(k+1) := x(k), b(k+1) := b(k).

Thus, we successively bisect intervals and their mid-points {x(k)} converge to the root x̃.

6



1 ROOT-FINDING FOR NON-LINEAR EQUATIONS

For k = 1

x

f (x)

x̃

a(1)

−

b(1)

+

x(1)

−

x

f (x)

x̃

a(1)

−

b(1)

+

b(2)

x(1)

−

a(2)

For k = 2

x

f (x)

x̃

x(2)

−
b(2)

+

−

a(2)
x

f (x)

x̃

x(2)

−

a(3)

b(2)

+

b(3)

a(2)

For k = 3

x

f (x)

x̃

a(3)

−
b(3)

+

x(3)

+

x

f (x)

x̃

a(3)

−

a(4)

b(3)x(3)

+

b(4)

The calculation is terminated when the given accuracy is obtained, i.e. when the following
holds

b(k) − a(k)

2
≤ ε .

The last mid-point x(k) approximate the searched root x̃ with the accuracy ε.

Example 3

Find all roots of the equation
x3 − ln(10− x) = 0

using the bisection method with the accuracy ε = 10−2.

We already know that the root lies in the interval [1.2, 1.3], i.e. a(1) = 1.2, b(1) = 1.3.
The approximation error is b(1)−a(1)

2 = 0.05 > ε = 10−2 so we continue in calculations.

7



1 ROOT-FINDING FOR NON-LINEAR EQUATIONS

We calculate the first approximation x(1) as the mid-point of this interval:

x(1) =
b(1) + a(1)

2
=

1.3 + 1.2
2

= 1.25 .

Then we calculate values of the function f (x) = x3 − ln(10− x) at points a(1), x(1), b(1):

f (a(1)) = −0.446, f (x(1)) = −0.2159, f (b(1)) = 0.0337

and determine interval [a(2), b(2)]:

f (x(1)) · f (b(1)) < 0⇒ a(2) = x(1) = 1.25, b(2) = b(1) = 1.3.

The approximation error is b(2)−a(2)
2 = 0.025 > ε = 10−2 so we continue in calculations.

We calculate the second approximation

x(2) =
a(2) + b(2)

2
=

1.25 + 1.3
2

= 1.275

and determine interval [a(3), b(3)]:

f (a(2)) = −0.2159, f (x(2)) = −0.0935, f (b(2)) = 0.0337,

f (x(2)) · f (b(2)) < 0⇒ a(3) = x(2) = 1.275 b(3) = b(2) = 1.3.

The approximation error is b(3)−a(3)
2 = 0.0125 > ε = 10−2 so we continue in calculations.

We calculate the third approximation

x(3) =
a(3) + b(3)

2
=

1.275 + 1.3
2

= 1.2875

and determine interval [a(4), b(4)]:

f (a(3)) = −0.0935, f (x(3)) = −0.0305, f (b(3)) = 0.0337,

f (x(3)) · f (b(3)) < 0⇒ a(4) = x(3) = 1.2875, b(4) = b(3) = 1.3.

Because the approximation error fulfil b(4)−a(4)
2 = 0.0062 ≤ ε = 10−2, we can terminate our

calculations.
We calculate the last approximation

x(4) =
a(4) + b(4)

2
=

1.2875 + 1.3
2

= 1.2938

k a(k) f (a(k)) x(k) f (x(k)) b(k) f (b(k)) |b(k)−a(k)|
2

1 1.2 − 1.25 − 1.3 + 0.05 > 10−2

2 1.25 − 1.275 − 1.3 + 0.02 > 10−2

3 1.275 − 1.2875 − 1.3 + 0.0125 > 10−2

4 1.2875 − 1.2938 + 1.3 + 0.0062 ≤ 10−2

The resulting approximation of the given equation root is

x̃ = 1.29± 0.01.

8



1 ROOT-FINDING FOR NON-LINEAR EQUATIONS

Example 4

Find all roots of the equation
2x + 2− ex = 0

using the bisection method with the accuracy ε = 10−2.
Use the MATLAB to solve the problem.

The first step is to separate roots. We define function f and plot its graph on a sufficient
interval that we choose according to the domain of this function. Let us note that the
domain of the function f (x) = 2x + 2− ex is D f = R.

>> f=@(x)(2*x+2-exp(x))
f =

@(x)(2*x+2-exp(x))
>> fplot(f,[-5,4])
>> grid on

-5 -4 -3 -2 -1 0 1 2 3 4
-30

-25

-20

-15

-10

-5

0

5

It is obvious that there are two points of intersection of the function f graph and the x-axis
included in intervals [−1, 0] and [1, 2].
Now we will calculate a root in the interval [1, 2].
We input end-points of the interval as the variables a and b and set up the starting value
of the approximation index k.

>> k=0; a=1; b=2;

In each step we increase the index k by one, calculate x(k) and the approximation error.
We use the if statement to choose an interval for the next step.

>> k=k+1
k =

1
>> x(k)=(a(k)+b(k))/2
x =

1.5000
>> (b(k)-a(k))/2
ans =

0.5000
>> if f(a(k))*f(x(k))<0, a(k+1)=a(k);b(k+1)=x(k);
else a(k+1)=x(k); b(k+1)=b(k);end

9



1 ROOT-FINDING FOR NON-LINEAR EQUATIONS

We repeat the following four statements until the approximation error is less than the given
accuracy.

>> k=k+1
>> x(k)=(a(k)+b(k))/2
>> (b(k)-a(k))/2
>> if f(a(k))*f(x(k))<0, a(k+1)=a(k);b(k+1)=x(k);
else a(k+1)=x(k); b(k+1)=b(k);end

The given accuracy is achieved in the seventh step.

>> k=k+1
k =

7
>> x(k)=(a(k)+b(k))/2
x =

1.5000 1.7500 1.6250 1.6875 1.6563 1.6719 1.6797
>> (b(k)-a(k))/2
ans =

0.0078

We write obtained data to a table.

k x(k) |b(k)−a(k)|
2

1 1.5000 0.5 > 10−2

2 1.7500 0.25 > 10−2

3 1.6250 0.125 > 10−2

4 1.6875 0.0625 > 10−2

5 1.6563 0.0313 > 10−2

6 1.6719 0.0156 > 10−2

7 1.6797 0.0078 ≤ 10−2

We round the last approximation to two decimal places according to the given accuracy.
The resulting approximation of the searched root is:

x̃ = 1.68± 10−2.

The second root lying. in the interval [−1, 0] can be found in analogous way. Approxima-
tions of all roots of the given equation are:

−0.77± 10−2, 1.68± 10−2.

1.3 Newton method

We find a sequence of numbers x(0), x(1), x(2), x(3), . . . , x(k) that converges to the searched
root x̃. The initial approximation x(0) is an arbitrary number from the interval [a, b] that we
obtain by previous separation of roots. The principle of the Newton method is to construct
a tangent line to the graph of the given function f at the point [x(0), f (x(0))]. The point of
intersection of this tangent line and the x-axis is the next approximation x(1). This process
is repeated until the given accuracy is achieved.
Let the following assumptions be fulfilled:

10



1 ROOT-FINDING FOR NON-LINEAR EQUATIONS

1. the first derivative f ′ does not change sign on the interval (a, b)
(i.e. function f is either increasing or decreasing on (a, b));

2. the second derivative f ′′ does not change sign on the interval (a, b) (i.e. function f is
either convex or concave on (a, b));

3. it holds f (a) · f (b) < 0 ;

4. it holds
∣∣∣∣ f (a)

f ′(a)

∣∣∣∣ < b− a and
∣∣∣∣ f (b)

f ′(b)

∣∣∣∣ < b− a.

Then the sequence
{

xk} calculated using the formula

x(k+1) = x(k) −
f
(
x(k)
)

f ′
(
x(k)
)

converges for an arbitrary initial approximation x(0) ∈ [a, b].

For k = 0

x

f (x)

x̃

tangent line

b
x(0)

a

[x(0), f (x(0))]

x

f (x)

x̃

tangent line

b
x(0)

a

[x(0), f (x(0))]

x(1)

For k = 1

x

f (x)

x̃

tangent line

ba

[x(1), f (x(1))]
x(1)

x

f (x)

x̃

tangent line

ba

[x(1), f (x(1))]
x(1)

x(2)

The calculation is terminated when the given accuracy ε is achieved, i.e. when

|x(k) − x(k−1)| ≤ ε .
Example 5

Find all roots of the equation
x3 − ln(10− x) = 0

using the Newton method with the accuracy ε = 10−6.

11



1 ROOT-FINDING FOR NON-LINEAR EQUATIONS

We already know that the root lies in the interval [1.2, 1.3] . In the beginning we have to
verify the Newton method assumptions, so we calculate the first and the second derivative
of the function f ,

f (x) = x3 − ln(10− x), f ′(x) = 3 · x2 +
1

10− x
, f ′′(x) = 6 · x +

1
(10− x)2 ,

farther we check condition∣∣∣∣ f (a)
f ′(a)

∣∣∣∣ = ∣∣∣∣−0.4468
4.4336

∣∣∣∣ = 0.1008 > 0.1 = b− a .

Thes condition is not fulfilled and that is why we have to shorten the interval in which the
searched root is separated.

1.1 1.15 1.2 1.25 1.3 1.35 1.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

We can see that the searched root lies in the interval [1.25, 1.3]. Now we start to verify the
assumptions on the new interval [1.25, 1.3]:∣∣∣∣ f (a)

f ′(a)

∣∣∣∣ = ∣∣∣∣−0.2159
4.8018

∣∣∣∣ = 0.0450 < 0.05 = b− a∣∣∣∣ f (b)
f ′(b)

∣∣∣∣ = ∣∣∣∣0.0337
5.1849

∣∣∣∣ = 0.0065 < 0.05 = b− a

We tabulate values of the first and the second derivative rounded to two decimal place.

x f ′(x) f ′′(x)

1.25 4.80 7.51
1.26 4.88 7.57
1.27 4.95 7.63
1.28 5.03 7.69
1.29 5.11 7.75
1.3 5.19 7.81

From the table we can deduce that

f ′(x) > 0 on [1.25, 1.3]

f ′′(x) > 0 on [1.25, 1.3] .

Thus, all assumptions of the Newton method are verified.
We choose the initial approximation x(0) = b = 1.3.

12
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We calculate the first approximation x(1)

x(1) = x(0) −
f
(
x(0)

)
f ′
(
x(0)

) = 1.3− 0.03367697433946
5.18494252873563

= 1.29350485098864

and the approximation error |x(1) − x(0)| .
= 0.007 > ε = 10−6. Calculations must continue.

We calculate the second approximation x(2)

x(2) = x(1) −
f
(
x(1)

)
f ′
(
x(1)

) = 1.29350485098864− 0.00016453367995
5.13432117883453

= 1.29347280513989

and the approximation error |x2 − x1| .
= 0.00003 > ε = 10−6. Calculations must continue.

We calculate the third approximation x(3)

x(3) = x(2) −
f
(
x(2)

)
f ′
(
x(2)

) = 1.29347280513989− 0.00000000399178
5.13407205040059

= 1.29347280436238

and the approximation error |x(3) − x(2)| .
= 0.0000000008 = 8 · 10−10 < ε = 10−6. The

given accuracy is achieved and calculations can be terminated.
We write obtained data into the table:

k x(k) |x(k) − x(k−1)|
0 1.3 —
1 1.29350485098864 0.007 > 10−6

2 1.29347280513989 0.00003 > 10−6

3 1.29347280436238 0.0000000008 ≤ 10−6

The resulting approximation of the searched root is

x̃ = 1.293473± 10−6.
Example 6

Find all roots of the equation
x− 4 cos2(x) = 0

using the Newton method with the accuracy ε = 10−8.
Use the MATLAB to solve the problem.

Due to previous separation we know that there are three roots in intervals [1, 2], [2, 3] and
[3, 4].
At first we attend to the root from the interval [3, 4].
We input end-points of this interval.

>> a=3;
>> b=4;

Then we calculate the first and the second derivative of the given function.

f (x) = x− 4 cos2(x)
f ′(x) = 1 + 8 cos(x) sin(x)

f ′′(x) = −8 sin2(x) + 8 cos2(x)

13
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>> df=@(x)1+8*cos(x).*sin(x)
df =

@(x)1+8*cos(x).*sin(x)
>> ddf=@(x)-8*sin(x).ˆ2+8*cos(x).ˆ2
ddf =

@(x)-8*sin(x).ˆ2+8*cos(x).ˆ2

Now we can start verifying the assumptions.
We want to verify that values of derivatives do not change signs on the interval [3, 4].
Therefore we generate points from this interval with the step 0.1, input these as the vector
x and calculate corresponding values of the first derivative.

>> x=a:0.1:b
x =

Columns 1 through 6
3.0000 3.1000 3.2000 3.3000 3.4000 3.5000
Columns 7 through 11
3.6000 3.7000 3.8000 3.9000 4.0000
>> df(x)
ans =

Columns 1 through 6
-0.1177 0.6676 1.4662 2.2462 2.9765 3.6279

Columns 7 through 11
4.1747 4.5948 4.8717 4.9942 4.9574

However, the values of the first derivative change signs on [3, 4], so we have to shorten the
interval of separation and to verify assumptions for this shorter one. We plot the graph of
the given function on [3, 4].

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
-1

-0.5

0

0.5

1

1.5

2

It is obvious that the searched root lies in the interval [3.4, 3.6] where we again try to verify
assumptions.
We input end-points of the new interval.

>> a=3.4;
>> b=3.6;

We generate points from [3.4, 3.6] with the step 0.01 and calculate values of the first deriva-
tive at these points

14
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>> x=a:0.01:b;
>> df(x)
ans =

Columns 1 through 6
2.9765 3.0456 3.1139 3.1814 3.2480 3.3138
Columns 7 through 12
3.3785 3.4424 3.5053 3.5671 3.6279 3.6877
Columns 13 through 18
3.7464 3.8040 3.8605 3.9159 3.9701 4.0230
Columns 19 through 21
4.0748 4.1254 4.1747

as well as values of the second derivative

>> ddf(x)
ans =

Columns 1 through 6
6.9552 6.8747 6.7915 6.7056 6.6170 6.5258
Columns 7 through 12
6.4320 6.3355 6.2366 6.1351 6.0312 5.9249
Columns 13 through 18
5.8162 5.7052 5.5919 5.4764 5.3587 5.2388
Columns 19 through 21
5.1168 4.9928 4.8668

We can see that both derivatives do not change signs on the whole interval [3.4, 3.6].
The next step is to verify the condition f (a) · f (b) < 0 that guarantees the root existence.

>> f(a)*f(b)
ans =

-0.1299

In the end we check validity of conditions
∣∣∣ f (a)

f ′(a)

∣∣∣ < b− a and
∣∣∣ f (b)

f ′(b)

∣∣∣ < b− a.

>> abs(f(a)/df(a))
ans =

0.1138
>> abs(f(b)/df(b))
ans =

0.0918

Both values are less than b− a = 3.6− 3.4 = 0.2.

Thus, all assumptions of the Newton method are verified for the interval [3.4, 3.6] and the
sequence of approximations will converge to the given equation root for an arbitrary initial
approximation x(0) ∈ [3.4.3.6].
Because the given accuracy is 10−8, we need to know all output values with higher preci-
sion. Thas is why we set up longer form of outputs using the statement format long.

15
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We input the initial approximation that can be arbitrary chosen from the interval [3.4, 3.6].
We choose the left end-point that is saved as a.

>> format long
>> x0=a
x0 =

3.40000000000000

We calculate the first approximation and the approximation error. If this error is greater
than given ε then the calculation continue.

>> x1=x0-f(x0)/df(x0)
x1 =

3.51382505776211
>> abs(x1-x0)
ans =

0.11382505776211

We calculate next approximations and corresponding approximation errors. We test if the
error is greater than given ε in each step.

>> x2=x1-f(x1)/df(x1)
x2 =

3.50225628403900
>> abs(x2-x1)
ans =

0.01156877372312
>> x3=x2-f(x2)/df(x2)
x3 =

3.50214740099497
>> abs(x3-x2)
ans =

1.088830440254540e-004
>> x4=x3-f(x3)/df(x3)
x4 =

3.50214739121355
>> abs(x4-x3)
ans =

9.781422338761558e-009

We write the obtained data into a table.

k x(k) |x(k) − x(k−1)|
0 3.4 —
1 3.51382505776211 0.11382505776211 > 10−8

2 3.50225628403900 0.01156877372312 > 10−8

3 3.50214740099497 1.088830440254540e− 004 > 10−8

4 3.50214739121355 9.781422338761558e− 009 ≤ 10−8

The given accuracy ε = 10−8 is achieved in the fourth step where the calculation is termi-
nated. We round the value of x(4) to eight decimal places.
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2 POLYNOMIAL INTERPOLATION

The resulting approximation of the searched root is

x̃ = 3.50214739± 10−8.

The other two roots can be found in analogous way. Approximations of all roots of the
given equation are:

1.03667388± 10−8, 2.47646805± 10−8, 3.50214739± 10−8.

Exercise 7

Find all roots of the equation
2x3 − x2 − x− 1 = 0

a) using the bisection method with the accuracy ε = 10−4,

b) using the bisection method with the accuracy ε = 10−4, use the MATLAB to solve
the problem,

c) using the Newton method with the accuracy ε = 10−8,

d) using the Newton method with the accuracy ε = 10−8, use the MATLAB to solve
the problem,

e) using the bisection method and the Newton method, both with the accuracy
ε = 10−4. Compare obtained results, use the MATLAB to solve the problem.

2 Polynomial Interpolation

The interpolation problem
Given n + 1 pairs (xi, yi) of distinct nodes xi and corresponding values yi, the problem
consists of finding a polynomial pn = pn(x) that fulfils the interpolation equalities

pn(xi) = yi, i = 0, . . . , n ,

i.e. a polynomial whose graph passes the given points.

There exists unique interpolating polynomial of degree at most n. We introduce three dif-
ferent ways how to find this polynomial.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6 p3(x)

x0

y0

x2

y2

x1

y1

x3

y3
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2 POLYNOMIAL INTERPOLATION

2.1 Interpolating polynomial in the standard form

The distinct nodes xi and corresponding values yi, i = 0, . . . , n are given.
Substituting the standard form of a polynomial

pn(x) = a0 + a1x + a2x2 + · · ·+ anxn

into the interpolation equalities pn(xi) = yi we obtain the system of linear equations

a0 + a1xi + a2x2
i + · · ·+ anxn

i = yi, i = 0, . . . , n,

that can be written in the matrix form as

1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1
1 x2 x2

2 . . . xn
2

...
...

... . . . ...
1 xn x2

n . . . xn
n

 ·


a0

a1

a2
...

an

 =



y0

y1

y2
...

yn

 .

The solution of this system of linear equations represents the coefficients a0, a1, . . . , an ∈ R

of the interpolating polynomial.

Example 8

Find the interpolating polynomial in the standard form for the data

i=0 i=1 i=2 i=3

xi 1 4 6 9
yi 2 5 3 4

We seek for a cubic interpolating polynomial

p3(x) = a0 + a1x + a2x2 + a3x3

that we substitute into the interpolation equalities pn(xi) = yi

p3(1) = 2 ⇒ a0 + a1 · 1 + a2 · 12 + a3 · 13 = 2

p3(4) = 5 ⇒ a0 + a1 · 4 + a2 · 42 + a3 · 43 = 5

p3(6) = 3 ⇒ a0 + a1 · 6 + a2 · 62 + a3 · 63 = 3

p3(9) = 4 ⇒ a0 + a1 · 9 + a2 · 92 + a3 · 93 = 4

The system of linear equations can be written in the matrix form:
1 1 1 1
1 4 16 64
1 6 36 216
1 9 81 729

 ·


a0
a1
a2
a3

 =


2
5
3
4


We solve the system and we obtain the interpolating polynomial coefficients a0 = −2.6,
a1 = 5.83, a2 = −1.316, a3 = 0, 083.
The resulting interpolating polynomial is (coefficients are rounded to three decimal places)

p3(x) = −2.6 + 5.833x− 1.317x2 + 0.083x3 .
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2 POLYNOMIAL INTERPOLATION

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

p3(x)

x0

y0

x2

y2

x1

y1

x3

y3

Example 9

Find the interpolating polynomial in the standard form for the data

i=0 i=1 i=2

xi 0 3 4
yi 2 1 5

Use the MATLAB to solve the problem.

>> x = [0; 3; 4]
>> y = [2; 1; 5]
>> M = [ones(3,1) x x.ˆ2]
>> a = M\y
>> format rat
>> a

>> plot(x,y,’o’)
>> grid on, hold on
>> p = @(x)a(1)+a(2)*x+a(3)*x.ˆ2;
>> fplot(p, [0 4], ’r’)
>> legend(’nodes’,’interpolating polynomial’)

2.2 Interpolating polynomial in the Lagrange form

The unique interpolating polynomial can be written in the Lagrange form

pn(x) = y0l0(x) + y1l1(x) + · · ·+ ynln(x),

where l0(x), l1(x), . . . , ln(x) are the Lagrange basis of the interpolation problem, for
i = 1, . . . , n:

li(x) =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

The Lagrange basis have the following properties for
i, j = 1, . . . , n:

• li(x) is the polynomial of degree n,

• li(xi) = 1,

• li(xj) = 0 for i 6= j.
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2 POLYNOMIAL INTERPOLATION

Example 10

Find the interpolating polynomial in the Lagrange form for the data

i=0 i=1 i=2

xi 0 3 4
yi 2 1 5

Calculate the value of the polynom at the point x = 2.

We write the Lagrange basis corresponding to single nodes:

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 3)(x− 4)
(0− 3)(0− 4)

=
1

12
(x− 3)(x− 4),

l1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x− 0)(x− 4)
(3− 0)(3− 4)

= −1
3

x(x− 4),

l2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 0)(x− 3)
(4− 0)(4− 3)

=
1
4

x(x− 3),

The interpolating polynomial is

p2(x) = y0l0(x) + y1l1(x) + y2l2(x)

= 2 · 1
12

(x− 3)(x− 4) + 1 ·
(
−1

3
x(x− 4)

)
+ 5 · 1

4
x(x− 3)

=
1
6
(x− 3)(x− 4)− 1

3
x(x− 4) +

5
4

x(x− 3).

The resulting form of the interpolating polynomial is

p2(x) =
1
6
(x− 3)(x− 4)− 1

3
x(x− 4) +

5
4

x(x− 3) .

We calculate the value of the polynom p2 at the point x = 2.

p2(2) =
1
6
(2− 3)(2− 4)− 1

3
2(2− 4) +

5
4

2(2− 3)

= −5
6

Example 11

Find the interpolating polynomial in the Lagrange form for the data

i=0 i=1 i=2 i=3

xi 1 4 6 9
yi 2 5 3 4

The Lagrange basis corresponding to single nodes is:

l0(x) =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
=

(x− 4)(x− 6)(x− 9)
(1− 4)(1− 6)(1− 9)

= − 1
120

(x− 4)(x− 6)(x− 9),
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2 POLYNOMIAL INTERPOLATION

l1(x) =
(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
=

(x− 1)(x− 6)(x− 9)
(4− 1)(4− 6)(4− 9)

=
1

30
(x− 1)(x− 6)(x− 9),

l2(x) =
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
=

(x− 1)(x− 4)(x− 9)
(6− 1)(6− 4)(6− 9)

= − 1
30

(x− 1)(x− 4)(x− 9),

l3(x) =
(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
=

(x− 1)(x− 4)(x− 6)
(9− 1)(9− 4)(9− 6)

=
1

120
(x− 1)(x− 4)(x− 6),

The interpolating polynomial is:

p3(x) =y0l0(x) + y1l1(x) + y2l2(x) + y3l3(x)

=2 ·
(
− 1

120
(x− 4)(x− 6)(x− 9)

)
+ 5 · 1

30
(x− 1)(x− 6)(x− 9)

+ 3 ·
(
− 1

30
(x− 1)(x− 4)(x− 9)

)
+ 4 · 1

120
(x− 1)(x− 4)(x− 6)

=− 1
60

(x− 4)(x− 6)(x− 9) +
1
6
(x− 1)(x− 6)(x− 9)− 1

10
(x− 1)(x− 4)(x− 9)

+
1

30
(x− 1)(x− 4)(x− 6)

The resulting form of the interpolating polynomial is

p3(x) =− 1
60

(x− 4)(x− 6)(x− 9) +
1
6
(x− 1)(x− 6)(x− 9)

− 1
10

(x− 1)(x− 4)(x− 9) +
1

30
(x− 1)(x− 4)(x− 6)

2.3 Interpolating polynomial in the Newton form

The interpolating polynomial of degree n in the Newton form is defined by the formula

pn(x) =y0 + f [x1, x0](x− x0) + f [x2, x1, x0](x− x0)(x− x1)

+ f [x3, x2, x1, x0](x− x0)(x− x1)(x− x2) + · · ·
+ f [xn, . . . , x0](x− x0)(x− x1) · · · (x− xn−1),

where f [x1, x0] is the 1st divided difference, f [x2, x1, x0] is the 2nd divided difference, up
to f [xn, . . . , x0] is the n-th divided difference.

Example for n = 4.

The interpolating polynomial in the Newton form for n = 4 is defined as

p4(x) =y0 + f [x1, x0](x− x0) + f [x2, x1, x0](x− x0)(x− x1)

+ f [x3, x2, x1, x0](x− x0)(x− x1)(x− x2)

+ f [x4, x3, x2, x1, x0](x− x0)(x− x1)(x− x2)(x− x3) .

The calculation of the divided differences for n = 4 is realized in the following table:
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2 POLYNOMIAL INTERPOLATION

1st 2nd 3rd 4th
i xi yi f [xi+1, xi] f [xi+2, xi+1, xi] f [xi+3, xi+2, xi+1, xi] f [xi+4, xi+3, xi+2, xi+1, xi]

0 x0 f0 f [x1, x0] = f [x2, x1, x0] = f [x3, x2, x1, x0] = f [x4, x3, x2, x1, x0] =

= y1−y0
x1−x0

= f [x2,x1]− f [x1,x0]
x2−x0

= f [x3,x2,x1]− f [x2,x1,x0]
x3−x0

= f [x4,x3,x2,x1]− f [x3,x2,x1,x0]
x4−x0

1 x1 f1 f [x2, x1] = f [x3, x2, x1] = f [x4, x3, x2, x1] =

= y2−y1
x2−x1

= f [x3,x2]− f [x2,x1]
x3−x1

= f [x4,x3,x2]− f [x3,x2,x1]
x4−x1

2 x2 f2 f [x3, x2] = f [x4, x3, x2] =

= y3−y2
x3−x2

= f [x4,x3]− f [x3,x2]
x4−x2

3 x3 f3 f [x4, x3] =

= y4−y3
x4−x3

4 x4 f4

Example 12

Find the interpolating polynomial in the Newton form for the data

i=0 i=1 i=2

xi 0 3 4

fi 2 1 5

The calculation of the divided differences is realized in the following table:

i xi yi 1st 2nd

0 0 2 −1
3

13
12

1 3 1 4

2 4 5

Using the values from the first row of the table we can write the interpolating polynomial.

p2(x) = 2− 1
3
(x− 0) +

13
12

(x− 0)(x− 3) = 2− 1
3

x +
13
12

x(x− 3)

1 2 3 4 5−1

1
2
3
4
5
6 p2(x)

x0

y0

x1

y1
x2

y2
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2 POLYNOMIAL INTERPOLATION

Example 13

Find the interpolating polynomial in the Newton form for the data

i=0 i=1 i=2

xi 0 3 4

fi 2 1 5

Use the MATLAB to solve the problem.

>> x=[0,3,4];
>> y=[2,1,5];
>> format rat
>> n=length(x);
>> df0=y;
>> for i=1:n-1,df1(i)=(df0(i+1)-df0(i))/(x(i+1)-x(i));end
>> for i=1:n-2,df2(i)=(df1(i+1)-df1(i))/(x(i+2)-x(i));end

>> format short
>> xg=x(1):0.01:x(3);
>> yg=df0(1)+df1(1)*(xg-x(1))+df2(1)*(xg-x(1)).*(xg-x(2));
>> plot(x,y,’go’)
>> hold on
>> plot(xg,yg)
>> legend(’nodes’,’interpolating polynomial’)

Exercise 14

Find the interpolating polynomial for the data

i=0 i=1 i=2 i=3

xi 0 1 3 5
yi 2 -3 0 3

a) in the standard form,

b) in the standard form, use the MATLAB to solve the problem,

c) in the Lagrage form,

d) in the Lagrange form, use the MATLAB to solve the problem,

e) in the Newton form,

f) in the Newton form, use the MATLAB to solve the problem.
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3 APPROXIMATION BY THE LEAST-SQUARES METHOD

3 Approximation by the least-squares method

The approximation problem
Given n pairs (xi, yi) of distinct nodes xi and corresponding values yi, the problem con-
sists of finding a function ϕ(x) that fulfils

ϕ(xi) ≈ yi, i = 1, . . . , n .

3.1 Linear approximation

Assume we are given n pairs (xi, yi), i = 1, . . . , n of distinct nodes xi and corresponding
values yi. We want to find such values c1, c2 ∈ R, that the linear function ϕ(x) = c1 + c2x
is the best approximation of the given data in the least-squares sense.

xxxxx

y
ϕ(x)

x1

y1

x2

y2

x3

y3

x4

y4

ϕ(x)

The following figure illustrates the given data and a straight line that represents the searched
linear function ϕ(x) = c1 + c2x.

xxxxx

y
ϕ(x)

x1

y1

ϕ(x1)

x2

y2

ϕ(x2)

x3

y3

ϕ(x3)

x4

y4
ϕ(x4)

ϕ(x)

We want to find the coefficients c1, c2 of the linear function ϕ(x), for which the sum of
areas of squares in the figure above is minimized. Because the area of the i-th square is
(c1 + c2xi − yi)

2, we are looking for a minimum of the price function

Φ(c1, c2) =
n

∑
i=1

(c1 + c2xi − yi)
2 .
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3 APPROXIMATION BY THE LEAST-SQUARES METHOD

The price function Φ is quadratic, therefore its minimum exists and is unique.
We are to solve the problem to find a minimum of the function of two variables.
The minimum [c1, c2] of the price function Φ must fulfil the equations

∂

∂c1
Φ(c1, c2) = 0,

∂

∂c2
Φ(c1, c2) = 0.

Having calculated the partial derivatives we obtain

2
n

∑
i=1

(c1 + c2xi − yi) = 0,

2
n

∑
i=1

(c1 + c2xi − yi)xi = 0,

that is the system of linear equations for the unknown coefficients c1, c2:

c1

n

∑
i=1

1 + c2

n

∑
i=1

xi =
n

∑
i=1

yi,

c1

n

∑
i=1

xi + c2

n

∑
i=1

x2
i =

n

∑
i=1

xiyi,

This system is called the normal system of equations and can be rewritten in a matrix
form: 

n

∑
i=1

1
n

∑
i=1

xi

n

∑
i=1

xi

n

∑
i=1

x2
i

 ·
(

c1
c2

)
=


n

∑
i=1

yi

n

∑
i=1

yixi


Example 15

Approximate the data from the table

xi -2 -1 1 2

yi 10 4 6 3

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x.

We write the normal system of equations in the matrix form
4

∑
i=1

1
4

∑
i=1

xi

4

∑
i=1

xi

4

∑
i=1

x2
i

 ·
(

c1
c2

)
=


4

∑
i=1

yi

4

∑
i=1

yixi
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3 APPROXIMATION BY THE LEAST-SQUARES METHOD

and calculate the sums:

4

∑
i=1

1 =1 + 1 + 1 + 1 = 4

4

∑
i=1

xi =− 2 + (−1) + 1 + 2 = 0

4

∑
i=1

x2
i =(−2)2 + (−1)2 + 12 + 22 = 10

4

∑
i=1

yi =10 + 4 + 6 + 3 = 23

4

∑
i=1

yixi =10 · (−2) + 4 · (−1) + 6 · 1 + 3 · 2 = −12

The normal system of equations is:(
4 0
0 10

)
·
(

c1
c2

)
=

(
23
−12

)
The unique solution of this system is c1 = 23

4 , c2 = −6
5 .

Therefore the linear function that represents the best linear approximation of the given data
in the least-squares method sense is

ϕ(x) =
23
4
− 6

5
x = 5.75− 1.2x .

-3 -2 -1 0 1 2

1
2
3
4
5
6
7
8
9

10

ϕ(x)

Example 16

Approximate the data from the table

xi -2 -1 1 2

yi 10 4 6 3

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x.

Use the MATLAB to solve the problem.
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>> x=[-2 -1 1 2];
>> y=[10 4 6 3];
>> n=length(x);
>> M=[n sum(x); sum(x) sum(x.ˆ2)];
>> v=[sum(y); sum(y.*x)];
>> c=M\v;

>> hold on
>> plot(x,y,’ro’)
>> xg=x(1):0.01:x(n);
>> yg=c(1)+c(2)*xg;
>> plot(xg,yg)

3.2 Approximation by two functions

Assume we are given n pairs (xi, yi), i = 1, . . . , n of distinct nodes xi and corresponding
values yi as well as two functions ϕ1(x) a ϕ2(x). We want to find such values c1, c2 ∈ R,
that the function ϕ(x) = c1ϕ1(x) + c2ϕ2(x) is the best approximation of the given data in
the least-squares sense.
Analogously to the case of linear approximation, we obtain the unknown coefficients
c1, c2 ∈ R as the minimum of the price function

Φ(c1, c2) =
n

∑
i=1

(c1ϕ1(xi) + c2ϕ2(xi)− yi)
2 ,

i.e. as the solution of the normal system of equations

c1

n

∑
i=1

(ϕ1(xi))
2 + c2

n

∑
i=1

ϕ1(xi) · ϕ2(xi) =
n

∑
i=1

yi · ϕ1(xi),

c1

n

∑
i=1

ϕ2(xi) · ϕ1(xi) + c2

n

∑
i=1

(ϕ2(xi))
2 =

n

∑
i=1

yi · ϕ2(xi)

or in the matrix form
n

∑
i=1

(ϕ1(xi))
2

n

∑
i=1

ϕ1(xi) · ϕ2(xi)

n

∑
i=1

ϕ2(xi) · ϕ1(xi)
n

∑
i=1

(ϕ2(xi))
2

 ·
(

c1
c2

)
=


n

∑
i=1

yi · ϕ1(xi)

n

∑
i=1

yi · ϕ2(xi)

 .

For example, if we want to approximate by the function

ϕ(x) = c1x2 + c1 sin(x) ,

then the normal system of equations is:

c1

n

∑
i=1

x4
i + c2

n

∑
i=1

x2
i sin(xi) =

n

∑
i=1

yix2
i ,

c1

n

∑
i=1

x2
i sin(xi) + c2

n

∑
i=1

sin2(xi) =
n

∑
i=1

yi sin(xi)

27



3 APPROXIMATION BY THE LEAST-SQUARES METHOD

or in the matrix form
n

∑
i=1

x4
i

n

∑
i=1

x2
i sin(xi)

n

∑
i=1

x2
i sin(xi)

n

∑
i=1

sin2(xi)

 ·
(

c1
c2

)
=


n

∑
i=1

yix2
i

n

∑
i=1

yi sin(xi)

 .

Example 17

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 ln(x) + c2x.

We write the normal system of equations in the matrix form
6

∑
i=1

ln2(xi)
6

∑
i=1

xi ln(xi)

6

∑
i=1

xi ln(xi)
6

∑
i=1

x2
i

 ·
(

c1
c2

)
=


6

∑
i=1

yi ln(xi)

6

∑
i=1

yixi


and calculate the sums:

6

∑
i=1

ln2(xi) = ln2(1) + ln2(2) + ln2(3) + ln2(5) + ln2(7) + ln2(10) = 13.3662

6

∑
i=1

xi ln(x1) =1 · ln(1) + 2 · ln(2) + 3 · ln(3) + 5 · ln(5)

+7 · ln(7) + 10 · ln(10) = 49.3765
6

∑
i=1

x2
i =12 + 22 + 32 + 52 + 72 + 102 = 188

6

∑
i=1

yi ln(xi) =0 · ln(1) + 3 · ln(2) + 5 · ln(3) + 8 · ln(5)

+8 · ln(7) + 7 · ln(10) = 52.1334
6

∑
i=1

yixi =0 · 1 + 3 · 2 + 5 · 3 + 8 · 5 + 8 · 7 + 7 · 10 = 187

The normal system of equations is:(
13.3662 49.3765
49.3765 188

)
·
(

c1
c2

)
=

(
52.1334

187

)
The unique solution of this system is c1 = 7.5896, c2 = −0.9987.
Therefore the best approximation of the given data in the least-squares method sense has
the form

ϕ(x) = 7.58961 ln(x)− 0.9987x .
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0 1 2 3 4 5 6 7 8 910
-2
-1
0
1
2
3
4
5
6
7

ϕ(x)

Example 18

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 ln(x) + c2x.

Use the MATLAB to solve the problem.

>> x=[1,2,3,5,7,10]
>> y=[0,3,5,8,8,7];
>> n=length(x);
>> M=[sum(log(x).ˆ2 sum(log(x)*x); sum(x.*log(x)) sum(x.ˆ2)];
>> v=[sum(y.*log(x)); sum(y.*x)];
>> c=M\v
>> hold on
>> plot(x,y,’ro’)
>> xg=x(1):0.01:x(n);
>> yg=c(1)*log(xg)+c(2)*xg;
>> plot(xg,yg)

3.3 Approximation by k functions

Assume we are given n pairs (xi, yi), i = 1, . . . , n of distinct nodes xi and correspond-
ing values yi as well as k functions ϕ1(x), ϕ2(x), . . ., ϕk(x). We want to find such values
c1, c2, . . . ck ∈ R, that the function ϕ(x) = c1ϕ1(x) + c2ϕ2(x) + · · · + ck ϕk(x) is the best
approximation of the given data in the least-squares sense.
These coefficients c1, c2, . . . , ck ∈ R we obtain as the solution of the normal system of equa-
tions

c1

n

∑
i=1

(ϕ1(xi))
2 + c2

n

∑
i=1

ϕ1(xi) · ϕ2(xi) + c3

n

∑
i=1

ϕ1(xi) · ϕ3(xi) + · · ·+ ck

n

∑
i=1

ϕ1(xi) · ϕk(xi)

=
n

∑
i=1

yi · ϕ1(xi),
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c1

n

∑
i=1

ϕ2(xi) · ϕ1(xi) + c2

n

∑
i=1

(ϕ2(xi))
2 + c3

n

∑
i=1

ϕ2(xi) · ϕ3(xi) + · · ·+ ck

n

∑
i=1

ϕ2(xi) · ϕk(xi)

=
n

∑
i=1

yi · ϕ2(xi),

...

c1

n

∑
i=1

ϕk(xi) · ϕ1(xi) + c2

n

∑
i=1

ϕk(xi) · ϕ2(xi) + c3

n

∑
i=1

ϕk(xi) · ϕ3(xi) + · · ·+ ck

n

∑
i=1

(ϕk(xi))
2

=
n

∑
i=1

yi · ϕk(xi).

For k = 3: We want to find the values c1, c2, c3 ∈ R for the function ϕ(x) = c1ϕ1(x) +
c2ϕ2(x) + ck ϕ3(x). The normal system of equations is

c1

n

∑
i=1

(ϕ1(xi))
2 + c2

n

∑
i=1

ϕ1(xi) · ϕ2(xi) + c3

n

∑
i=1

ϕ1(xi) · ϕ3(xi) =
n

∑
i=1

yi · ϕ1(xi),

c1

n

∑
i=1

ϕ2(xi) · ϕ1(xi) + c2

n

∑
i=1

(ϕ2(xi))
2 + c3

n

∑
i=1

ϕ2(xi) · ϕ3(xi) =
n

∑
i=1

yi · ϕ2(xi),

c1

n

∑
i=1

ϕ3(xi) · ϕ1(xi) + c2

n

∑
i=1

ϕ3(xi) · ϕ2(xi) + c3

n

∑
i=1

(ϕ3(xi))
2 =

n

∑
i=1

yi · ϕ3(xi)

or in the matrix form

n

∑
i=1

(ϕ1(xi))
2

n

∑
i=1

ϕ1(xi) · ϕ2(xi)
n

∑
i=1

ϕ1(xi) · ϕ3(xi)

n

∑
i=1

ϕ2(xi) · ϕ1(xi)
n

∑
i=1

(ϕ2(xi))
2

n

∑
i=1

ϕ2(xi) · ϕ3(xi)

n

∑
i=1

ϕ3(xi) · ϕ1(xi)
n

∑
i=1

ϕ3(xi) · ϕ2(xi)
n

∑
i=1

(ϕ3(xi))
2


·

c1
c2
c3

 =



n

∑
i=1

yi · ϕ1(xi)

n

∑
i=1

yi · ϕ2(xi)

n

∑
i=1

yi · ϕ3(xi)


.

Example 19

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x + c3x2.

We write the normal system of equations in the matrix form
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6

∑
i=1

1
6

∑
i=1

xi

6

∑
i=1

x2
i

6

∑
i=1

xi

6

∑
i=1

x2
i

6

∑
i=1

x3
i

6

∑
i=1

x2
i

6

∑
i=1

x3
i

6

∑
i=1

x4
i


·

c1
c2
c3

 =



6

∑
i=1

yi

6

∑
i=1

yixi

6

∑
i=1

yix2
i


and calculate the sums:

6

∑
i=1

1 =1 + 1 + 1 + 1 + 1 + 1 = 6

6

∑
i=1

xi =1 + 2 + 3 + 5 + 7 + 10 = 28

6

∑
i=1

x2
i =12 + 22 + 32 + 52 + 72 + 102 = 188

6

∑
i=1

x3
i =13 + 23 + 33 + 53 + 73 + 103 = 1504

6

∑
i=1

x4
i =14 + 24 + 34 + 54 + 74 + 104 = 13124

6

∑
i=1

yi =0 + 3 + 5 + 8 + 8 + 7 = 31

6

∑
i=1

yixi =0 · 1 + 3 · 2 + 5 · 3 + 8 · 5 + 8 · 7 + 7 · 10 = 187

6

∑
i=1

yix2
i =0 · 12 + 3 · 22 + 5 · 32 + 8 · 52 + 8 · 72 + 7 · 102 = 1349

The normal system of equations is: 6 28 188
28 188 1504

188 1504 13124

 ·(c1
c2

)
=

 31
187

1349


The unique solution of this system is c1 = −2.63963, c2 = 3.16090,
c3 = −0.22163.
The best quadratic approximation of the given data in the least-squares method sense) has
the form

ϕ(x) = −2.63963 + 3.16090x− 0.22163x2 .

0 1 2 3 4 5 6 7 8 910
0
1
2
3
4
5
6
7

ϕ(x)
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Example 20

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x + c3x2.

Use the MATLAB to solve the problem.

>> x=[1,2,3,5,7,10];
>> y=[0,3,5,8,8,7];
>> n=length(x);
>> M=[n sum(x) sum(x.ˆ2); sum(x) sum(x.ˆ2) sum(x.ˆ3); sum(x.ˆ2)

sum(x.ˆ3) sum(x.ˆ4)];
>> v=[sum(y); sum(y.*x); sum(y.*x.ˆ2)];
>> c=M\v
>> hold on
>> plot(x,y,’ro’)
>> xg=x(1):0.01:x(n);
>> yg=c(1)+c(2)*xg+c(3)*x.ˆ2;
>> plot(xg,yg)

Exercise 21

Approximate the data from the table

xi 1 2 3.5 4.5 6 7 7.5

yi 4.2 5 5.5 7 7.8 8.5 8.1

in the sense of the least-squares method

a) by the linear function
ζ(x) = a1 + a2x,

b) by the function
ϕ(x) = b1ex + b2x,

c) by the quadratic function

θ(x) = c1 + c2x + c3x2.

Compare the obtained results both graphically and numerically.
Use the MATLAB to solve the problem.
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4 Numerical differentiation

4.1 The first derivative

Given distinct nodes xi and corresponding function values f (xi) of a function f , the prob-
lem is to approximate values of the first derivative f ′(xi) at the given nodes. Because the
value f ′(xi) is the slope of the tangent line to the graph of the function f at the point
[xi, f (xi)], we can approximate it by a slope of a proper secant line.
Using a secant line corresponding to nodes xi and xi+1 we obtain the forward difference

f ′(xi) ≈
f (xi+1)− f (xi)

xi+1 − xi
.

f (x)

xi xi+1

secant line

tangent line

Using a secant line corresponding to nodes xi−1 and xi we obtain the backward difference

f ′(xi) ≈
f (xi)− f (xi−1)

xi − xi−1
.

f (x)

xixi−1

secant line

tangent line

Using a secant line corresponding to nodes xi−1 and xi+1 we obtain the central difference

f ′(xi) ≈
f (xi+1)− f (xi−1)

xi+1 − xi−1
.

f (x)

xi−1 xi xi+1

secant line

tangent line

In practice, the central difference is usually the most accurate approximation of the deriva-
tive value.
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4 NUMERICAL DIFFERENTIATION

Example 22

Approximate the derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the forward difference.

We calculate the approximate value of the derivative y′(x1)

y′(x1) =
y2 − y1

x2 − x1
=

50− 40
1− 0

= 10 ,

approximate value of the derivative y′(x3)

y′(x2) =
y3 − y2

x3 − x2
=

20− 50
2− 1

= −30 ,

approximate value of the derivative y′(x3)

y′(x3) =
y4 − y3

x4 − x3
=

25− 20
3− 2

= 5 ,

approximate value of the derivative y′(x4)

y′(x4) =
y5 − y4

x5 − x4
=

30− 25
4− 3

= 5.

Table of the obtained approximate values of the derivatives at the nodes:

xi 0 1 2 3 4

y′(xi) 10 -30 5 5 —

The approximate value of the derivative y′(x5) cannot be calculated by the forward differ-
ence because there is no following node there.

Example 23

Approximate the derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the backward difference.

We calculate the approximate value of the derivative y′(x2)

y′(x2) =
y2 − y1

x2 − x1
=

50− 40
1− 0

= 10 ,
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approximate value of the derivative y′(x3)

y′(x3) =
y3 − y2

x3 − x2
=

20− 50
2− 1

= −30 ,

approximate value of the derivative y′(x4)

y′(x4) =
y4 − y3

x4 − x3
=

25− 20
3− 2

= 5 ,

approximate value of the derivative y′(x5)

y′(x5) =
y5 − y4

x5 − x4
=

30− 25
4− 3

= 5.

Table of the obtained approximate values of the derivatives at the nodes:

xi 0 1 2 3 4

y′(xi) — 10 -30 5 5

The approximate value of the derivative y′(x1) cannot be calculated by the backward dif-
ference because there is no previous node there.

Example 24

Approximate the derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the central difference.

We calculate the approximate value of the derivative y′(x2)

y′(x2) =
y3 − y1

x3 − x1
=

20− 40
2− 0

= −10 ,

approximate value of the derivative y′(x3)

y′(x3) =
y4 − y2

x4 − x2
=

25− 50
3− 1

= −25
2

= −12.5 ,

approximate value of the derivative y′(x4)

y′(x4) =
y5 − y3

x5 − x3
=

30− 20
4− 2

= 5.

Table of the obtained approximate values of the derivatives at the nodes:

xi 0 1 2 3 4

y′(xi) — -10 -12.5 5 —

The approximate values of the derivatives y′(x1) and y′(x5) cannot be calculated by the
central difference because there are no required near by nodes there.
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Example 25

Approximate the derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the central difference at the interior nodes, the forward difference at the first node
and the backward difference at the last node.

All needed approximate values of the derivative y′(xi) were calculated in previous exam-
ples.
Table of the obtained approximate values of the derivatives at the nodes:

xi 0 1 2 3 4

y′(xi) 10 -10 -12.5 5 5

Example 26

Approximate the derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the central difference at the interior nodes, the forward difference at the first node
and the backward difference at the last node.
Use the MATLAB to solve the problem.

>> x=[0 1 2 3 4];
>> y=[40 50 20 25 30];
>> n=length(x);
>> yd(1)=(y(2)-y(1))/(x(2)-x(1));
>> for i=2:n-1, yd(i)=(y(i+1)-y(i-1))/(x(i+1)-x(i-1)); end
>> yd(n)=(y(n)-y(n-1))/(x(n)-x(n-1));

4.2 The second derivative

Given distinct nodes xi and corresponding function values f (xi) of a function f , values of
the second derivative f ′′(xi) at the given nodes can be approximated by the formula:

f ′′(xi) ≈
f (xi+1)− 2 f (xi) + f (xi−1)

(xi+1 − xi)(xi − xi−1)
.
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f (x)

xi−1 xi xi+1

If the nodes are equidistant with the step h then the formula above can be simplified to the
form:

f ′′(xi) ≈
f (xi+1)− 2 f (xi) + f (xi−1)

h2 .

Example 27

Approximate the second derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

We calculate the approximate value of the second derivative y′′(x2)

y′′(x2) =
y3 − 2y2 + y1

(x3 − x2)(x2 − x1)
=

20− 2 · 50 + 40
(2− 1)(1− 0)

= −40 ,

approximate value of the second derivative y′′(x3)

y′′(x3) =
y4 − 2y3 + y2

(x4 − x3)(x3 − x2)
=

25− 2 · 20 + 50
(3− 2)(2− 1)

= 35 ,

approximate value of the second derivative y′′(x4)

y′′(x4) =
y5 − 2y4 + y3

(x5 − x4)(x4 − x3)
=

30− 2 · 25 + 20
(4− 3)(3− 2)

= 0.

Table of the obtained approximate values of the second derivatives at the nodes:

xi 0 1 2 3 4

y′′(xi) — -40 35 0 —

Example 28

Approximate the second derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

Use the MATLAB to solve the problem.
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>> x=[0 1 2 3 4];
>> y=[40 50 20 25 30];
>> h= 1;
>> n=length(x)
>> for i=2:n-1, ydd(i)=(f(x(i+1))-2*f(x(i))+f(x(i-1)))/(hˆ2); end

Exercise 29

The data are given in table:

xi 2 4 6 8 10 12 14
yi 12.4 5.3 3.2 4.5 7.1 8.6 11.6

a) Approximate the derivative of the data using the central difference at the interior
nodes, the forward difference at the first node and the backward difference at the
last node.

b) Approximate the derivative of the data using the central difference at the interior
nodes, the forward difference at the first node and the backward difference at the
last node. Use the MATLAB to solve the problem.

c) Approximate the second derivative of the data using the central difference at the
interior nodes, the forward difference at the first node and the backward difference
at the last node.

d) Approximate the second derivative of the data using the central difference at the
interior nodes, the forward difference at the first node and the backward difference
at the last node. Use the MATLAB to solve the problem.

5 Numerical integration

We calculate the value of the definite integral∫ b

a
f (x)dx.

f (x)

a b

I

5.1 The rectangle rule

We approximate the function f by the constant interpolating polynomial p0(x) with the
node x0 = a+b

2 .
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f (x)

p0(x)

a ba+b
2

Irect

f
(

a+b
2

)

This approximation can be integrated analytically and we obtain the rectangle rule:

Irect = (b− a) f
(

a + b
2

)
Example 30

Evaluate the definite integral ∫ 6

0

x
1 + x2 dx

using the rectangle rule.

We have a = 0, b = 6 and f (x) =
x

1 + x2 .

The rectangle rule.

Irect = (b− a) f
(

a + b
2

)
= (6− 0) f (3) = (6− 0)

3
1 + 32

=
18
10

= 1.8

Example 31

Evaluate the definite integral ∫ 6

0

x
1 + x2 dx

using the rectangle rule.
Use the MATLAB to solve the problem.

>> f=@(x)x./(1+x.ˆ2);
>> a=0; b=6;
>> I=(b-a)*f((a+b)/2)

5.2 The trapezoidal rule

We approximate the function f by the linear interpolating polynomial p1(x) with the nodes
x0 = a, x1 = b.
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f (x)

p1(x)

a b

Itrap

The linear approximation can be also integrated analytically and we obtain the trapezoidal
rule:

Itrap =
b− a

2
( f (a) + f (b)) .

Example 32

Evaluate the definite integral ∫ 6

0

x
1 + x2 dx

using the trapezoidal rule.

We have a = 0, b = 6 and f (x) =
x

1 + x2 .

The trapezoidal rule.

Itrap =
b− a

2
( f (a) + f (b)) =

6− 0
2

( f (0) + f (6))

= 3
(

0
1 + 02 +

6
1 + 62

)
=

18
37

= 0.4865

Example 33

Evaluate the definite integral ∫ 6

0

x
1 + x2 dx

using the trapezoidal rule.
Use the MATLAB to solve the problem.

>> f=@(x)x./(1+x.ˆ2);
>> a=0; b=6;
>> I=(b-a)/2*(f(a)+f(b))

5.3 The Simpson’s rule

We approximate the function f by the quadratic interpolating polynomial p2(x) with the
nodes x0 = a, x1 = a+b

2 , x2 = b.
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f (x)

p2(x)

a ba+b
2

ISimps

The quadratic approximation can be also integrated analytically and we obtain

ISimps =
b− a

6

(
f (a) + 4 f

(
a + b

2

)
+ f (b)

)
.

Example 34

Evaluate the definite integral ∫ 6

0

x
1 + x2 dx

using the Simpson’s rule.

We have a = 0, b = 6 and f (x) =
x

1 + x2 .

The Simpson’s rule.

ISimps =
b− a

6

(
f (a) + 4 f

(
a+b

2

)
+ f (b)

)
=

6− 0
6

( f (0) + 4 f (3) + f (6))

= 1
(

0
1 + 02 + 4

3
1 + 32 +

6
1 + 62

)
= 0 +

12
10

+
6

37
= 1.3622

Example 35

Evaluate the definite integral ∫ 6

0

x
1 + x2 dx

using the Simpson’s rule.
Use the MATLAB to solve the problem.

>> f=@(x)x./(1+x.ˆ2);
>> a=0; b=6;
>> I=(b-a)/6*(f(a)+4*f((a+b)/2)+f(b))

5.4 The composite rectangle rule

If we want to integrate the function f over the interval [a, b] using the composite rectangle
rule, we have to divide the given interval into n equidistant subintervals of the length
h = (b− a)/n with the nodes
xi = a + ih, i = 0, 1, . . . , n.
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f (x)

x0 x1 x2 x3 x4x0+x1
2

x1+x2
2

x2+x3
2

x3+x4
2

ICR

n = 4, h = b−a
n

The formula of the composite rectangle rule with the step h is then of the form

ICR = h
n

∑
i=1

f
(

xi−1+xi
2

)
.

Example 36

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite rectangle rule for n = 4.

We equate n = 4, so that the step is h = b−a
n = 0.5 and we obtain the nodes x0 = −1,

x1 = −0.5, x2 = 0, x3 = 0.5 a x4 = 1.

ICR = h
n

∑
i=1

f
(

xi−1+xi
2

)
= h

(
f ( x0+x1

2 ) + f ( x1+x2
2 ) + f ( x2+x3

2 ) + f ( x3+x4
2 )

)
= 0.5(e−0.75 + e−0.25 + e0.25 + e0.75)

.
= 2.3261.

Example 37

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite rectangle rule for n = 4.

Use the MATLAB to solve the problem.

>> f = @(x)exp(x)
>> a = -1; b = 1;
>> n = 4; h = (b-a)/n;
>> xmid = a+h/2:h:b-h/2;
>> y = f(xmid);
>> I=h*sum(y)
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5.5 The composite trapezoidal rule

If we want to integrate the function f over the interval [a, b] using the composite trape-
zoidal rule, we have to divide the given interval into n equidistant subintervals of the
length h = (b− a)/n with the nodes xi = a + ih, i = 0, 1, . . . , n.

f (x)

x0 x1 x2 x3 x4

h h h h

n = 4, h = b−a
n

ICT

The formula of the composite trapezoidal rule with the step h is then of the form

ICT =
h
2

(
f (x0) + 2

n−1

∑
i=1

f (xi) + f (xn)

)
.

Example 38

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite trapezoidal rule for n = 4.

We equate n = 4, so that the step is h = b−a
n = 0.5 and we obtain the nodes x0 = −1,

x1 = −0.5, x2 = 0, x3 = 0.5 a x4 = 1.

ICT =
h
2

(
f (x0) + 2

n−1

∑
i=1

f (xi) + f (xn)

)
= h

2 ( f (x0) + 2 ( f (x1) + f (x2) + f (x3)) + f (xn))

=
0.5
2
(e−1 + 2(e−0.5 + e0 + e0.5) + e1)

.
= 2.3992.

Example 39

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite trapezoidal rule for n = 4.

Use the MATLAB to solve the problem.

>> f = @(x)exp(x);
>> a = -1; b = 1;
>> n = 4; h = (b-a)/n;
>> x = a:h:b;
>> y = f(x);
>> I=h/2*(y(1)+2*sum(y(2:n))+y(n+1))
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5.6 The composite Simpson’s rule

If we want to integrate the function f over the interval [a, b] using the composite Simpson’s
rule, we have to divide the given interval into n equidistant subintervals where n has to be
an even number. The length of each subinterval is h = (b − a)/n and we obtain an odd
number of the nodes xi = a + ih, i = 0, 1, . . . , n.

f (x)

x0 x1 x2 x3 x4

ICS

n = 4, h = b−a
n

The formula of the composite Simpson’s rule with the step h is then of the form

ICS =
h
3

 f (x0) + 4
n−1

∑
i = 1
i even

f (xi) + 2
n−2

∑
i = 2
i odd

f (xi) + f (xn)

 .

Example 40

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite Simpson’s rule for n = 4.

We euate n = 4, so that the step is h = b−a
n = 0.5 and we obtain the nodes x0 = −1,

x1 = −0.5, x2 = 0, x3 = 0.5 a x4 = 1.

ICS =
h
3

(
f (x0) + 4

n/2

∑
i=1

f (x2i−1) + 2
n/2−1

∑
i=1

f (x2i) + f (x2m)

)
= h

3 ( f (x0) + 4 ( f (x1) + f (x3)) + 2 f (x2) + f (x4))

= 0.5
3 (e−1 + 4(e−0.5 + e0.5) + 2e0 + e1)

.
= 2.3512.

Example 41

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite Simpson’s rule for n = 4.

Use the MATLAB to solve the problem.

>> f = @(x)exp(x);
>> a = -1; b = 1;
>> n = 4; h = (b-a)/n;
>> x = a:h:b;
>> y = f(x);
>> I=h/3*(y(1)+4*sum(y(2:2:n))+2*sum(y(3:2:n-1))+y(n+1))
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5 NUMERICAL INTEGRATION

5.7 The evaluation of the integral with the given accuracy

We calculate the approximate value Ih of the integral using the integration formula with
the step h. Consequently, we calculate the approximate value Ih/2 with the half-length step
h/2. We stop the calculation, if the following holds

|Ih − Ih/2| ≤ ε.

The composite trapezoidal rules for n = 1, 2, 4

f (x)

x0 x1

n = 1

h

f (x)

x0 x1 x2 x3 x4
h h

n = 2
f (x)

x0 x1 x2 x3 x4
h h h h

n = 4

The composite Simpson’s rules for n = 2, 4, 8

f (x)

x0 x1

h h
x2

n = 2
f (x)

x0 x1 x2 x3 x4

h h h h

n = 4
f (x)

x0 x2 x4 x6

h h h h h h h h
x8x1 x3 x5 x7

n = 8

Example 42

Evaluate the definite integral ∫ e

1

ln x√
9− x2

dx

using the composite Simpson’s formula with the given accuracy ε = 10−8.
Use the MATLAB to solve the problem.

We define the function f and input the limits of integration as the variables a, b.

>> f = @(x)log(x)./sqrt(9-x.ˆ2);
>> a = 1;
>> b = exp(1);

We set n = 2 in the first step. We input the vector of the nodes as the variable x.

>> n = 2;
>> h = (b-a)/n;
>> x = a:h:b;
>> y = f(x);

Because we aim at the accuracy 10−8, we can not take up with the four decimal places that
the MATLAB display in the standard short format. We have to switch the output format
to long.

>> format long
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5 NUMERICAL INTEGRATION

We calculate the approximate value of the given integral and input it as the variable Inew.

>> Inew = h/3*(y(1)+4*sum(y(2:2:n))+2*sum(y(3:2:n-1))+y(n+1))
Inew =

0.52733592

We save the obtained value as the variable I. Then we double the value of n and repeat all
calculations. Finally we evaluate the error approximation |Ih − I2h|

>> I = Inew;
>> n = 2*n
n =

4
>> h = (b-a)/n;
>> x = a:h:b;
>> y = f(x);
>> Inew = h/3*(y(1)+4*sum(y(2:2:n))+2*sum(y(3:2:n-1))+y(n+1))
Inew =

0.51036199
>> Error = abs(Inew-I)
Error =

0.01697393

We repeat the previous seven statements till the error is greater than 10−8.
We round the result to eight decimal places and write it as∫ e

1

ln x√
9− x2

dx = 0.50661191± 10−8.

n Ih |Ih − I2h|
2 0.52733592 —
4 0.51036199 0.01697393
8 0.50708297 0.00327902

16 0.50665442 0.00042855
32 0.50661499 0.00003943
64 0.50661211 0.00000288

128 0.50661192 0.00000019
256 0.50661191 0.00000001
512 0.50661191 0.00000000

ε = 10−8 = 0.000000001

> 10−8

> 10−8

> 10−8

> 10−8

> 10−8

> 10−8

> 10−8

≤ 10−8

Exercise 43

Evaluate the definite integral ∫ 3

1

2x

x2 + x + 3
dx

a) using the composite trapezoidal rule for n = 4 and for n = 8, compare the results,

b) using the composite trapezoidal rule for n = 4 and for n = 8. compare the results,
use the MATLAB to solve the problem,

c) using the composite Simpson’s rule for n = 4 and for n = 8, compare the results,
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6 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

use the MATLAB to solve the problem,

d) using the composite trapezoidal formula with the given accuracy ε = 10−4, use the
MATLAB to solve the problem,

e) using the composite Simpson’s formula with the given accuracy ε = 10−8, use the
MATLAB to solve the problem.

6 Numerical solution of ordinary differential equations

The initial-value problem for the ordinary differential equation
We find the continuous function y = y(x) that on the interval [a, b] fulfil the differential
equation

y′(x) = f (x, y(x))

and the initial condition
y(a) = c.

To solve the problem numerically we divide the interval [a, b] into n equidistant subinter-
vals of the length h = (b− a)/n with the nodes x0 = a, x1, x2, . . . , xn = b, i.e.

xi = a + ih, i = 0, 1, . . . , n.

x0 x1 x2 x3 b = x4

h h h h

To these nodes we assign values y0 = c, y1, y2, . . . , yn that approximate values of the ana-
lytical solution y(x0), y(x1), y(x2), . . . , y(xn).
Thus the numerical solution of the initial-value problem is a set of n + 1 discrete points
[xi; yi] , i = 0, 1, . . . , n.

x

y

c = y0

y1

y2

y3

b = x3x2x1a = x0

6.1 Euler method

At first we calculate the nodes

xi = a + ih, i = 0, 1, . . . , n.
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6 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

We consider the differential equation

y′(x) = f (x, y(x)),

in a node xi and we replace the accurate value of the solution y(xi) by its approximation
yi.

Next we approximate the derivative on the left side using the numerical formula

y′(xi) = f (xi, y(xi)) ≈ yi+1 − yi

h
= f (xi, yi).

If the values xi, yi are known, we can calculate an unknown value yi+1

yi+1 − yi

h
= f (xi, yi)

yi+1 − yi = h · f (xi, yi)

yi+1 = yi + h · f (xi, yi)

The initial value y0 is given by the initial condition and the other values yi+1 we can calcu-
late by the derived formula.

y0 = c
for i = 0, . . . , n− 1

yi+1 = yi + h f (xi, yi),
Example 44

Solve the initial-value problem

y′ = x2 − 0.2y, y(−2) = −1

on the interval [−2, 3] using the Euler method with the step h = 1.

At first we specify the number n of subintervals into which we divide the given interval
[a, b]

n =
b− a

h
=

3− (−2)
1

= 5.

Then we calculate the nodes:

x0 = a = −2
x1 = a + h = −2 + 1 = −1
x2 = a + 2h = −2 + 2 = 0
x3 = a + 3h = 1
x4 = a + 4h = 2
x5 = a + 5h = 3

The value y0 = −1 is given by the initial condition, other values yi for i = 1, . . . , 5 can be
calculated by the formula yi+1 = yi + h f (xi, yi).
There it holds f (x, y) = x2 − 0.2y and h = 1, so the computational formula is of the form:

yi+1 = yi + x2
i − 0.2yi

48



6 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

y0 = −1 (given initial value)

y1 = y0 + h f (x0, y0) = y0 + x2
0 − 0.2y0 = −1 + (−2)2 − 0.2 · (−1) = 3.2

y2 = y1 + h f (x1, y1) = y1 + x2
1 − 0.2y1 = 3.2 + (−1)2 − 0.2 · 3.2 = 3.56

y3 = y1 + h f (x2, y2) = y2 + x2
2 − 0.2y2 = 2.848

y4 = y1 + h f (x3, y3) = y3 + x2
3 − 0.2y3 = 3.2784

y5 = y1 + h f (x4, y4) = y4 + x2
4 − 0.2y4 = 6.6227

In the end we write the calculated values of the obtained numerical solution of the initial-
value problem to a table

xi −2 −1 0 1 2 3
yi −1 3.2 3.56 2.848 3.2784 6.6227

and plot the graph of this numerical solution:

x

y

x0 = a
x1 x2 x3 x4 x5 = b

y0 = c

y1

y2

y3

y4

y5

Example 45

Solve the initial-value problem

y′ = x2 − 0.2y, y(−2) = −1

on the interval [−2, 3] using the Euler method with the step h = 1.
Use the MATLAB to solve the problem.

>> a=-2; b=3; c=-1;
>> f=@(x,y)(x.ˆ2-0.2*y);
>> h=1; n=(b-a)/h;
>> x=a:h:b;
>> y(1)=c;
>> for i=1:n, y(i+1)=y(i)+h*f(x(i),y(i)); end
>> [x;y]
>> plot(x,y,’b.-’)
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6 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

6.2 Heun method

The equidistant nodes are the same as for the Euler method, i.e.

xi = a + ih, i = 0, 1, . . . , n.

The value y0 is also given by the initial condidion y0 = c.
The method principle is that for every i = 0, . . . , n− 1 the value yi is already known and
the value yi+1 is to be found. In contrast to the Euler method, in each step we first have to
evaluate auxiliary constants k1, k2 and next we calculate the value yi+1 from these:

y0 = c
for i = 0, . . . , n− 1

k1 = h f (xi, yi)

k2 = h f (xi + h, yi + k1)

yi+1 = yi +
1
2
(k1 + k2)

Example 46

Solve the initial-value problem

y′ = x2 − 0.2y, y(−2) = −1

on the interval [−2, 3] using the Heun method with the step h = 1.

At first we calculate the number of subintervals into which we divide the given interval
[a, b]

n =
b− a

h
=

3− (−2)
1

= 5

and the nodes
x0 = a = −2
x1 = a + h = −2 + 1 = −1
x2 = a + 2h = −2 + 2 = 0
x3 = a + 3h = 1
x4 = a + 4h = 2
x5 = a + 5h = 3 .

The initial condition determine the value y0 = −1. In following steps we first evaluate
constants k1, k2 and using these we calculate the required value yi+1.

y0 = −1 (initial condition)

Since it holds f (x, y) = x2 − 0.2y and h = 1 in this example, the calculations look like as
follows:

for i = 0

k1 = h f (x0, y0) = 1 · ((−2)2 − 0.2 · (−1)) = 4.2

k2 = h f (x0 + h, y0 + k1) = 1 · ((−2 + 1)2 − 0.2 · (−1 + 4.2)) = 0.36

y1 = y0 +
1
2
(k1 + k2) = −1 +

1
2
(4.2 + 0.36) = 1.28
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for i = 1

k1 = h f (x1, y1) = 1 · ((−1)2 − 0.2 · 1.28) = 0.744

k2 = h f (x1 + h, y1 + k1) = 1 · ((−1 + 1)2 − 0.2 · (1.28 + 0.744)) = −0.4048

y2 = y1 +
1
2
(k1 + k2) = 1.28 +

1
2
(0.744 + (−0.4048)) = 1.4496

for i = 2
k1 = h f (x2, y2) = −0.2899
k2 = h f (x2 + h, y2 + k1) = 0.7681

y3 = y2 +
1
2
(k1 + k2) = 1.6887

for i = 3
k1 = h f (x3, y3) = 0.6623
k2 = h f (x3 + h, y3 + k1) = 3.5298

y4 = y3 +
1
2
(k1 + k2) = 3.7847

for i = 4
k1 = h f (x4, y4) = 3.2431
k2 = h f (x4 + h, y4 + k1) = 7.5944

y5 = y4 +
1
2
(k1 + k2) = 9.2035

We write the obtained numerical solution values to a table:

xi −2 −1 0 1 2 3
yi −1 1.2800 1.4496 1.6887 3.7847 9.2035

Example 47

Solve the initial-value problem

y′ = x2 − 0.2y, y(−2) = −1

on the interval [−2, 3] using the Heun method with the step h = 1.
Use the MATLAB to solve the problem.

>> a=-2; b=3; c=-1;
>> f=@(x,y)(x.ˆ2-0.2*y);
>> h=1; n=(b-a)/h;
>> x=a:h:b;
>> y(1)=c;
>> for i=1:n,

k1=h*f(x(i),y(i));
k2=h*f(x(i+1),y(i)+k1);
y(i+1)=y(i)+1/2*(k1+k2);

end
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6 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

6.3 Runge-Kutta method RK4

The equidistant nodes are the same as before, i.e.

xi = a + ih, i = 0, 1, . . . , n

and the value y0 is again determined by the initial condition y0 = c.
The method principle is that for every i = 0, . . . , n− 1 the value yi is already known and
the value yi+1 is to be found. Analogous to the Heun method, in each step we first have to
evaluate auxiliary constants k1, k2, k3, k4 and next we calculate the value yi+1 from these:

y0 = c
for i = 0, . . . , n− 1 k1 = h f (xi, yi)

k2 = h f (xi +
1
2

h, yi +
1
2

k1)

k3 = h f (xi +
1
2

h, yi +
1
2

k2)

k4 = h f (xi + h, yi + k3)

yi+1 = yi +
1
6
(k1 + 2k2 + 2k3 + k4).

Example 48

Solve the initial-value problem

y′ = y− x2 + 2, y(0) = −1

on the interval [0, 2] using the Runge-Kutta method RK4 with the step h = 0.5.

We calculate the number of subintervals into which we divide the given interval [a, b]

n =
b− a

h
=

2− 0
0.5

= 4

and the nodes
x0 = a = 0
x1 = a + h = 0 + 0.5 = 0.5
x2 = a + 2h = 0 + 1 = 1
x3 = a + 3h = 1 + 1.5 = 1.5
x4 = a + 4h = 0 + 2

The initial condition determine the value y0 = −1. In consequent steps we first evaluate
constants k1, k2, k3, k4 and using these we calculate the required value yi+1.

y0 = −1 (initial condition)

Since it holds f (x, y) = y− x2 + 2 and h = 0.5 in this example, the calculations look like as
follows:
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for i = 0
k1 = h f (x0, y0) = 0.5

k2 = h f (x0 +
1
2 h, y0 +

1
2 k1) = 0.5938

k3 = h f (x0 +
1
2 h, y0 +

1
2 k2) = 0.6172

k4 = h f (x0 + h, y0 + k3) = 0.6836

y1 = y0 +
1
6(k1 + 2k2 + 2k3 + k4) =

= −1 + 1
6(0.5 + 2 · 0.5938 + 2 · 0.6172 + 0.6836) = −0.3991

for i = 1
k1 = h f (x1, y1) = 0.6755

k2 = h f (x1 +
1
2 h, y1 +

1
2 k1) = 0.6881

k3 = h f (x1 +
1
2 h, y1 +

1
2 k2) = 0.6912

k4 = h f (x1 + h, y1 + k3) = 0.6461

y2 = y1 +
1
6(k1 + 2k2 + 2k3 + k4) = 0.2809

for i = 2
k1 = h f (x2, y2) = 0.6405

k2 = h f (x2 +
1
2 h, y2 +

1
2 k1) = 0.5193

k3 = h f (x2 +
1
2 h, y2 +

1
2 k2) = 0.4890

k4 = h f (x2 + h, y2 + k3) = 0.2600

y3 = y2 +
1
6(k1 + 2k2 + 2k3 + k4) = 0.7671

for i = 3
k1 = h f (x2, y2) = 0.2586

k2 = h f (x3 +
1
2 h, y3 +

1
2 k1) = −0.0830

k3 = h f (x3 +
1
2 h, y3 +

1
2 k2) = −0.1684

k4 = h f (x3 + h, y3 + k3) = −0.7007

y4 = y3 +
1
6(k1 + 2k2 + 2k3 + k4) = 0.6096

We write the obtained numerical solution to a table

xi 0 0.5 1 1.5 2
yi −1 −0.3991 0.2809 0.7671 0.6096

and plot this solution graph:

x

y

x0 = a

x1 x2 x3 x4 = b

y0 = c

y1

y2

y3
y4
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Example 49

Solve the initial-value problem

y′ = y− x2 + 2, y(0) = −1

on the interval [0, 2] using the Runge-Kutta method RK4 with the step h = 0.5.
Use the MATLAB to solve the problem.

>> a=0; b=2; c=-1;
>> f=@(x,y)(y-x.ˆ2+2);
>> h=0.5; n=(b-a)/h;
>> x=a:h:b;
>> y(1)=c;
>> for i=1:n

k1=h*f(x(i),y(i))
k2=h*f(x(i)+h/2,y(i)+1/2*k1);
k3=h*f(x(i)+h/2,y(i)+1/2*k2);
k4=h*f(x(i)+h,y(i)+k3);
y(i+1)=y(i)+1/6*(k1+2*k2+2*k3+k4);

end

Exercise 50

Solve the initial-value problem

y′ =
3y− 2x

x + y
, y(3) = 2

on the interval [3, 6]

a) using the Euler method with the step h = 0.5,

b) using the Euler method with the step h = 0.5, use the MATLAB to solve the prob-
lem,

c) using the Heun method with the step h = 0.5, use the MATLAB to solve the prob-
lem,

d) using the Runge-Kutta method RK4 with the step h = 0.5, use the MATLAB to
solve the problem,

e) using the Euler method and the Runge-Kutta method RK4 both with the same
step h = 0.5, compare values of both numerical solutions in a table as well as
graphically, use the MATLAB to solve the problem.
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