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5 – Root-finding for non-linear equations, separation of roots Řy

Given a continuous function y = f (x), we find x̃ ∈ D f such that

f (x̃) = 0.

The value x̃ is called root or zero of the function f .

Separation of roots

At first we have to determine number of roots and their positions, i.e. we
need to find such intervals that each of these includes only one root. We
can use the following theorem.

Theorem

If the function f is continuous on the interval [a, b] and

f (a) · f (b) < 0

then there is x̃ ∈ (a, b) such that f (x̃) = 0.

There are several ways how to find intervals such that each one of these
includes only one root.

• We plot the graph of the function f and find points of intersection of
this graph and the x-axis.

f (x)

xa bx̃

−

+

• We convert the equation f (x) = 0 into a form h(x) = g(x) and we
find points of intersection of graphs of functions h and g.

h(x) g(x)

xa bx̃

• We tabulate values of the function f a find where their signs change.
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Example

Separate all roots of the equation
x3 − ln(10− x) = 0.

We convert the given equation into such form to be able to plot graphs of functions on both sides of this equation.

x3 − ln(10− x) = 0

x3 = ln(10− x)

We plot graphs of functions g(x) = x3 and h(x) = ln(10− x) and find points of intersection of these graphs.

h(x) = ln(10− x)

g(x) = x3

x−1−2 0 1 2 3 4 5 6 7 8 9x̃

It is obvious that the point of intersection is unique and lies within the interval [1, 2]. To determine the root more precisely we tabulate function values of
the function f (x) = x3 − ln(10− x) on this interval with the step 0.1. We round all values to two decimal places.

x 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

f (x) -1.19 -0.85 -0.44 0.03 0.59 1.23 1.96 2.79 3.72 4.76 5.92

We can observe that sings of these function values change between 1.2 and 1.3. The function f is also evidently continuous on the mentioned interval. So
the equation x3 − ln(10− x) = 0 has unique root in the interval [1.2, 1.3].
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Example

Separate all roots of the equation

x− 4 cos2(x) = 0.

Use the MATLAB to solve the problem.

We plot graph of the function f (x) = x− 4 cos2(x) and locate its point of
intersection with the x-axis. We plot the graph on sufficiently long interval
that naturally must be a subset of the function domain. We choose the
interval [−10, 10].

>> fplot(@(x)x-4*cos(x).ˆ2,[-10,10])
>> grid on

-10 -8 -6 -4 -2 0 2 4 6 8 10

-12

-10

-8

-6

-4

-2

0

2

4

6

8

We can observe that all roots lie in the interval [0, 4]. So we plot the graph
once more only on this shorter interval to determine the roots position
more precisely.

>> fplot(@(x)x-4*cos(x).ˆ2,[0,4])
>> grid on

0 1 2 3 4
-4

-3

-2

-1

0

1

2

There are three roots separated in intervals [1, 2], [2, 3] and [3, 4].
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Example

Separate all roots of the equation
x4 − 5x3 − 10x2 + 1 = 0.

We calculate function values of the function f (x) = x4 − 5x3 − 10x2 + 1 for the x values −4,−3.5,−3, . . . , 7. All values are rounded to one decimal place.

x -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

f (x) 417 242.9 127 55.7 17 0.4 -3 -0.8 1 -2.1 -13 -33.3 -63 -100.6 -143 -185.8 -223 -247.1 -249 -218.3 -143 -9.6 197

Using this table we can localize intervals where the function values change signs.

There are four roots of the given equation separated in intervals [−1.5,−1], [−0.5, 0], [0, 0.5] and [6.5, 7].
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Exercise

Separate all roots of the equation

2x3 − x2 − x− 1 = 0.
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Exercise

Separate all roots of the equation

2x3 − x2 − x− 1 = 0.

Use the MATLAB to solve the problem.
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Bisection method

The aim of all methods is to find a sequence of numbers
x(1), x(2), x(3), . . . , x(k) that converges to the searched root x̃.

Assume that the root is separated in the interval [a, b]. We denote
a(1) = a, b(1) = b, k = 1 in the beginning of calculations.
We determine the value x(k) as the mid-point of the interval [a(k), b(k)], i.e.

x(k) =
a(k) + b(k)

2
.

The next interval is chosen in accordace with signs of function values
f (a(k)), f (x(k)), f (b(k)).

If f (a(k)) f (x(k)) < 0 then a(k+1) := a(k), b(k+1) := x(k).

If f (x(k)) f (b(k)) < 0 then a(k+1) := x(k), b(k+1) := b(k).

Thus, we successively bisect intervals and their mid-points {x(k)} con-
verge to the root x̃.

For k = 1

x

f (x)

x̃

a(1)

−

b(1)

+

x(1)

−

x

f (x)

x̃

a(1)

−

b(1)

+

b(2)

x(1)

−

a(2)

For k = 2

x

f (x)

x̃

x(2)
−

b(2)

+

−

a(2) x

f (x)

x̃

x(2)
−

a(3)

b(2)

+

b(3)

a(2)

For k = 3

x

f (x)

x̃

a(3)
−

b(3)

+

x(3)

+

x

f (x)

x̃

a(3)
−

a(4)

b(3)x(3)

+

b(4)

The calculation is terminated when the given accuracy is obtained,
i.e. when the following holds

b(k) − a(k)

2
≤ ε .

The last mid-point x(k) approximate the searched root x̃ with the accu-
racy ε.
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Example

Find all roots of the equation

x3 − ln(10− x) = 0

using the bisection method with the accuracy ε = 10−2.

We already know that the root lies in the interval [1.2, 1.3], i.e. a(1) = 1.2,
b(1) = 1.3.
The approximation error is b(1)−a(1)

2 = 0.05 > ε = 10−2 so we continue in
calculations.
We calculate the first approximation x(1) as the mid-point of this interval:

x(1) =
b(1) + a(1)

2
=

1.3 + 1.2
2

= 1.25 .

Then we calculate values of the function f (x) = x3 − ln(10− x) at points
a(1), x(1), b(1):

f (a(1)) = −0.446, f (x(1)) = −0.2159, f (b(1)) = 0.0337

and determine interval [a(2), b(2)]:

f (x(1)) · f (b(1)) < 0⇒ a(2) = x(1) = 1.25, b(2) = b(1) = 1.3.

The approximation error is b(2)−a(2)
2 = 0.025 > ε = 10−2 so we continue in

calculations.
We calculate the second approximation

x(2) =
a(2) + b(2)

2
=

1.25 + 1.3
2

= 1.275

and determine interval [a(3), b(3)]:

f (a(2)) = −0.2159, f (x(2)) = −0.0935, f (b(2)) = 0.0337,

f (x(2)) · f (b(2)) < 0⇒ a(3) = x(2) = 1.275 b(3) = b(2) = 1.3.

The approximation error is b(3)−a(3)
2 = 0.0125 > ε = 10−2 so we continue

in calculations.
We calculate the third approximation

x(3) =
a(3) + b(3)

2
=

1.275 + 1.3
2

= 1.2875

and determine interval [a(4), b(4)]:

f (a(3)) = −0.0935, f (x(3)) = −0.0305, f (b(3)) = 0.0337,

f (x(3)) · f (b(3)) < 0⇒ a(4) = x(3) = 1.2875, b(4) = b(3) = 1.3.

Because the approximation error fulfil b(4)−a(4)
2 = 0.0062 ≤ ε = 10−2, we

can terminate our calculations.
We calculate the last approximation

x(4) =
a(4) + b(4)

2
=

1.2875 + 1.3
2

= 1.2938

k a(k) f (a(k)) x(k) f (x(k)) b(k) f (b(k)) |b(k)−a(k)|
2

1 1.2 − 1.25 − 1.3 + 0.05 > 10−2

2 1.25 − 1.275 − 1.3 + 0.02 > 10−2

3 1.275 − 1.2875 − 1.3 + 0.0125 > 10−2

4 1.2875 − 1.2938 + 1.3 + 0.0062 ≤ 10−2

The resulting approximation of the given equation root is

x̃ = 1.29± 0.01.
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Example

Find all roots of the equation

2x + 2− ex = 0

using the bisection method with the accuracy ε = 10−2.
Use the MATLAB to solve the problem.

The first step is to separate roots. We define function f and plot its graph
on a sufficient interval that we choose according to the domain of this func-
tion. Let us note that the domain of the function f (x) = 2x + 2 − ex is
D f = R.

>> f=@(x)(2*x+2-exp(x))
f =

@(x)(2*x+2-exp(x))
>> fplot(f,[-5,4])
>> grid on

-5 -4 -3 -2 -1 0 1 2 3 4
-30

-25

-20

-15

-10

-5

0

5

It is obvious that there are two points of intersection of the function f
graph and the x-axis included in intervals [−1, 0] and [1, 2].

Now we will calculate a root in the interval [1, 2].
We input end-points of the interval as the variables a and b and set up the
starting value of the approximation index k.

>> k=0; a=1; b=2;

In each step we increase the index k by one, calculate x(k) and the
approximation error. We use the if statement to choose an interval for
the next step.

>> k=k+1
k =

1
>> x(k)=(a(k)+b(k))/2
x =

1.5000
>> (b(k)-a(k))/2
ans =

0.5000
>> if f(a(k))*f(x(k))<0, a(k+1)=a(k);b(k+1)=x(k);
else a(k+1)=x(k); b(k+1)=b(k);end

We repeat the following four statements until the approximation error is
less than the given accuracy.

>> k=k+1
>> x(k)=(a(k)+b(k))/2
>> (b(k)-a(k))/2
>> if f(a(k))*f(x(k))<0, a(k+1)=a(k);b(k+1)=x(k);
else a(k+1)=x(k); b(k+1)=b(k);end
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The given accuracy is achieved in the seventh step.

>> k=k+1
k =

7
>> x(k)=(a(k)+b(k))/2
x =
1.5000 1.7500 1.6250 1.6875 1.6563 1.6719 1.6797

>> (b(k)-a(k))/2
ans =

0.0078

We write obtained data to a table.

k x(k) |b(k)−a(k)|
2

1 1.5000 0.5 > 10−2

2 1.7500 0.25 > 10−2

3 1.6250 0.125 > 10−2

4 1.6875 0.0625 > 10−2

5 1.6563 0.0313 > 10−2

6 1.6719 0.0156 > 10−2

7 1.6797 0.0078 ≤ 10−2

We round the last approximation to two decimal places according to the given accuracy.

The resulting approximation of the searched root is:
x̃ = 1.68± 10−2.

The second root lying. in the interval [−1, 0] can be found in analogous way. Approximations of all roots of the given equation are:

−0.77± 10−2, 1.68± 10−2.



Worksheets for Numerical methods

15 – Root-finding for non-linear equations, bisection method Řy

Exercise

Find all roots of the equation

2x3 − x2 − x− 1 = 0

using the bisection method with the accuracy ε = 10−2.
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Exercise

Find all roots of the equation

2x3 − x2 − x− 1 = 0

using the bisection method with the accuracy ε = 10−2.
Use the MATLAB to solve the problem.
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17 – Root-finding for non-linear equations, Newton method Řy

Newton method

We find a sequence of numbers x(0), x(1), x(2), x(3), . . . , x(k) that converges
to the searched root x̃. The initial approximation x(0) is an arbitrary num-
ber from the interval [a, b] that we obtain by previous separation of roots.
The principle of the Newton method is to construct a tangent line to the
graph of the given function f at the point [x(0), f (x(0))]. The point of inter-
section of this tangent line and the x-axis is the next approximation x(1).
This process is repeated until the given accuracy is achieved.

Let the following assumptions be fulfilled:

1. the first derivative f ′ does not change sign on the interval (a, b)
(i.e. function f is either increasing or decreasing on (a, b));

2. the second derivative f ′′ does not change sign on the interval (a, b)
(i.e. function f is either convex or concave on (a, b));

3. it holds f (a) · f (b) < 0 ;

4. it holds
∣∣∣∣ f (a)

f ′(a)

∣∣∣∣ < b− a and
∣∣∣∣ f (b)

f ′(b)

∣∣∣∣ < b− a.

Then the sequence
{

xk} calculated using the formula

x(k+1) = x(k) −
f
(
x(k)
)

f ′
(
x(k)
)

converges for an arbitrary initial approximation x(0) ∈ [a, b].

For k = 0

x

f (x)

x̃

tangent line

b

x(0)

a

[x(0), f (x(0))]

x

f (x)

x̃

tangent line

b

x(0)

a

[x(0), f (x(0))]

x(1)

For k = 1

x

f (x)

x̃

tangent line

ba

[x(1), f (x(1))]
x(1)

x

f (x)

x̃

tangent line

ba

[x(1), f (x(1))]
x(1)

x(2)

The calculation is terminated when the given accuracy ε is achieved, i.e.
when

|x(k) − x(k−1)| ≤ ε .
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Example

Find all roots of the equation

x3 − ln(10− x) = 0

using the Newton method with the accuracy ε = 10−6.

We already know that the root lies in the interval [1.2, 1.3] . In the begin-
ning we have to verify the Newton method assumptions, so we calculate
the first and the second derivative of the function f ,

f (x) = x3− ln(10− x), f ′(x) = 3 · x2 +
1

10− x
, f ′′(x) = 6 · x+ 1

(10− x)2 ,

farther we check condition∣∣∣∣ f (a)
f ′(a)

∣∣∣∣ = ∣∣∣∣−0.4468
4.4336

∣∣∣∣ = 0.1008 > 0.1 = b− a .

Thes condition is not fulfilled and that is why we have to shorten the in-
terval in which the searched root is separated.

1.1 1.15 1.2 1.25 1.3 1.35 1.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

We can see that the searched root lies in the interval [1.25, 1.3]. Now we
start to verify the assumptions on the new interval [1.25, 1.3]:∣∣∣∣ f (a)

f ′(a)

∣∣∣∣ = ∣∣∣∣−0.2159
4.8018

∣∣∣∣ = 0.0450 < 0.05 = b− a∣∣∣∣ f (b)
f ′(b)

∣∣∣∣ = ∣∣∣∣0.0337
5.1849

∣∣∣∣ = 0.0065 < 0.05 = b− a

We tabulate values of the first and the second derivative rounded to two
decimal place.

x f ′(x) f ′′(x)

1.25 4.80 7.51
1.26 4.88 7.57
1.27 4.95 7.63
1.28 5.03 7.69
1.29 5.11 7.75

1.3 5.19 7.81

From the table we can deduce that

f ′(x) > 0 on [1.25, 1.3]

f ′′(x) > 0 on [1.25, 1.3] .

Thus, all assumptions of the Newton method are verified.
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We choose the initial approximation x(0) = b = 1.3.
We calculate the first approximation x(1)

x(1) = x(0) −
f
(
x(0)

)
f ′
(
x(0)

) = 1.3− 0.03367697433946
5.18494252873563

= 1.29350485098864

and the approximation error |x(1) − x(0)| .
= 0.007 > ε = 10−6. Calculations must continue.

We calculate the second approximation x(2)

x(2) = x(1) −
f
(
x(1)

)
f ′
(
x(1)

) = 1.29350485098864− 0.00016453367995
5.13432117883453

= 1.29347280513989

and the approximation error |x2 − x1| .
= 0.00003 > ε = 10−6. Calculations must continue.

We calculate the third approximation x(3)

x(3) = x(2) −
f
(
x(2)

)
f ′
(
x(2)

) = 1.29347280513989− 0.00000000399178
5.13407205040059

= 1.29347280436238

and the approximation error |x(3) − x(2)| .
= 0.0000000008 = 8 · 10−10 < ε = 10−6. The given accuracy is achieved and calculations can be terminated.

We write obtained data into the table:

k x(k) |x(k) − x(k−1)|
0 1.3 —
1 1.29350485098864 0.007 > 10−6

2 1.29347280513989 0.00003 > 10−6

3 1.29347280436238 0.0000000008 ≤ 10−6

The resulting approximation of the searched root is
x̃ = 1.293473± 10−6.
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Example

Find all roots of the equation

x− 4 cos2(x) = 0

using the Newton method with the accuracy ε = 10−8.

From the previous examples we know that there are three roots in intervals
[1, 2], [2, 3] and [3, 4].
At first we find the root that lies in the interval [1, 2]. Because the New-
ton method assumptions are quite strong, it is better to work with shorter
intervals. Therefore we tabulate function values (rounded to two decimal
places) of the function f (x) = x − 4 cos2(x) on the interval [1, 2] with the
step 0.1 .

x 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

f (x) -0.17 0.28 0.68 1.01 1.28 1.48 1.60 1.63 1.60 1.48 1.30

We can see that the root has to lie in the interval [1, 1.1]. We calculate the
first and the second derivative

f (x) = x− 4 cos2(x),
f ′(x) = 1 + 8 sin(x) cos(x) = 1 + 4 sin(2x),
f ′′(x) = 8 cos(2x)

and verify the assumptions for the chosen interval [1, 1.1]:

f (a) · f (b) = −0.17 · 0.28 < 0∣∣∣∣ f (a)
f ′(a)

∣∣∣∣ = ∣∣∣∣ 1− 4 cos2(1)
1 + 4 sin(2 · 1)

∣∣∣∣ = 0.04 < 0.1 = b− a∣∣∣∣ f (b)
f ′(b)

∣∣∣∣ = ∣∣∣∣1.1− 4 cos2(1.1)
1 + 4 sin(2 · 1.1)

∣∣∣∣ = 0.07 < 0.1 = b− a

Next we tabulate values of the first and the second derivative rounded to
two decimal places

x f ′(x) f ′′(x)

1.00 4.64 -3.33
1.01 4.60 -3.47
1.02 4.57 -3.62
1.03 4.53 -3.76
1.04 4.50 -3.90
1.05 4.45 -4.04
1.06 4.41 -4.18
1.07 4.37 -4.32
1.08 4.33 -4.45
1.09 4.28 -4.58
1.10 4.23 -4.71

and we can observe that both derivatives do not change signs on the men-
tioned interval

f ′(x) > 0 on [1, 1.1]

f ′′(x) < 0 on [1, 1.1] .

Thus, all assumptions of the Newton method are verified.

We choose the initial approximation x(0) = a = 1.
We calculate the first approximation x(1)

x(1) = x(0) −
f
(
x(0)

)
f ′
(
x(0)

) = 1− 1− 4 cos2(1)
1 + 4 sin(2 · 1) = 1.0361655092

and the approximation error |x(1) − x(0)| .
= 0.04 > ε = 10−8. Calculations

must continue.
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We calculate the second approximation x(2)

x(2) = x(1) −
f
(
x(1)

)
f ′
(
x(1)

) = 1.0361655092− 1.0361655092− 4 cos2(1.0361655092)
1 + 4 sin(2 · 1.0361655092)

= 1.0366737657

and the approximation error |x(2) − x(1)| .
= 0.0005 > ε = 10−8. Calculations must continue.

We calculate the third approximation x(3)

x(3) = x(2) −
f
(
x(2)

)
f ′
(
x(2)

) = 1.0366737657− 1.0366737657− 4 cos2(1.0366737657)
1 + 4 sin(2 · 1.0366737657)

= 1.0366738760

and the approximation error |x(3) − x(2)| .
= 0.0000001 > ε = 10−8. Calculations must continue.

We calculate the fourth approximation x(4):

x(4) = x(3) −
f
(
x(3)

)
f ′
(
x(3)

) = 1.0366738760− 1.0366738760− 4 cos2(1.0366738760)
1 + 4 sin(2 · 1.0366738760)

= 1.0366738760

and the approximation error |x(4) − x(3)| .
= 0.00000000000001 < ε = 10−8. The given accuracy is achieved and calculations can be terminated.

We write obtained data into the table:

k x(k) |x(k) − x(k−1)|
0 1 —
1 1.0361655092 0.04 > 10−8

2 1.0366737657 0.0005 > 10−8

3 1.0366738760 0.0000001 > 10−8

4 1.0366738760 0.00000000000001 ≤ 10−8

The resulting approximation of the searched root is
x̃ = 1.03667388± 10−8.

The other two roots can be found in analogous way. Approximations of all roots of the given equation are:

1.03667388± 10−8, 2.47646805± 10−8, 3.50214739± 10−8.
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Example

Find all roots of the equation

x− 4 cos2(x) = 0

using the Newton method with the accuracy ε = 10−8.
Use the MATLAB to solve the problem.

Due to previous separation we know that there are three roots in intervals
[1, 2], [2, 3] and [3, 4].
At first we attend to the root from the interval [3, 4].
We input end-points of this interval.

>> a=3;
>> b=4;

Then we calculate the first and the second derivative of the given function.

f (x) = x− 4 cos2(x)
f ′(x) = 1 + 8 cos(x) sin(x)

f ′′(x) = −8 sin2(x) + 8 cos2(x)

>> df=@(x)1+8*cos(x).*sin(x)
df =

@(x)1+8*cos(x).*sin(x)
>> ddf=@(x)-8*sin(x).ˆ2+8*cos(x).ˆ2
ddf =

@(x)-8*sin(x).ˆ2+8*cos(x).ˆ2

Now we can start verifying the assumptions.
We want to verify that values of derivatives do not change signs on the
interval [3, 4].

Therefore we generate points from this interval with the step 0.1, input
these as the vector x and calculate corresponding values of the first deriva-
tive.

>> x=a:0.1:b
x =

Columns 1 through 6
3.0000 3.1000 3.2000 3.3000 3.4000 3.5000
Columns 7 through 11

3.6000 3.7000 3.8000 3.9000 4.0000
>> df(x)
ans =

Columns 1 through 6
-0.1177 0.6676 1.4662 2.2462 2.9765 3.6279

Columns 7 through 11
4.1747 4.5948 4.8717 4.9942 4.9574

However, the values of the first derivative change signs on [3, 4], so we
have to shorten the interval of separation and to verify assumptions for
this shorter one. We plot the graph of the given function on [3, 4].

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
-1

-0.5

0

0.5

1

1.5

2

It is obvious that the searched root lies in the interval [3.4, 3.6] where we
again try to verify assumptions.
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We input end-points of the new interval.

>> a=3.4;
>> b=3.6;

We generate points from [3.4, 3.6] with the step 0.01 and calculate values
of the first derivative at these points

>> x=a:0.01:b;
>> df(x)
ans =
Columns 1 through 6
2.9765 3.0456 3.1139 3.1814 3.2480 3.3138
Columns 7 through 12
3.3785 3.4424 3.5053 3.5671 3.6279 3.6877
Columns 13 through 18
3.7464 3.8040 3.8605 3.9159 3.9701 4.0230
Columns 19 through 21
4.0748 4.1254 4.1747

as well as values of the second derivative

>> ddf(x)
ans =
Columns 1 through 6
6.9552 6.8747 6.7915 6.7056 6.6170 6.5258
Columns 7 through 12
6.4320 6.3355 6.2366 6.1351 6.0312 5.9249
Columns 13 through 18
5.8162 5.7052 5.5919 5.4764 5.3587 5.2388
Columns 19 through 21
5.1168 4.9928 4.8668

We can see that both derivatives do not change signs on the whole interval
[3.4, 3.6].

The next step is to verify the condition f (a) · f (b) < 0 that guarantees the
root existence.

>> f(a)*f(b)
ans =

-0.1299

In the end we check validity of conditions
∣∣∣ f (a)

f ′(a)

∣∣∣ < b − a and∣∣∣ f (b)
f ′(b)

∣∣∣ < b− a.

>> abs(f(a)/df(a))
ans =

0.1138
>> abs(f(b)/df(b))
ans =

0.0918

Both values are less than b− a = 3.6− 3.4 = 0.2.

Thus, all assumptions of the Newton method are verified for the interval
[3.4, 3.6] and the sequence of approximations will converge to the given
equation root for an arbitrary initial approximation x(0) ∈ [3.4.3.6].
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Because the given accuracy is 10−8, we need to know all output values
with higher precision. Thas is why we set up longer form of outputs using
the statement format long.
We input the initial approximation that can be arbitrary chosen from the
interval [3.4, 3.6]. We choose the left end-point that is saved as a.

>> format long
>> x0=a
x0 =

3.40000000000000

We calculate the first approximation and the approximation error. If this
error is greater than given ε then the calculation continue.

>> x1=x0-f(x0)/df(x0)
x1 =

3.51382505776211
>> abs(x1-x0)
ans =

0.11382505776211

We calculate next approximations and corresponding approximation
errors. We test if the error is greater than given ε in each step.

>> x2=x1-f(x1)/df(x1)
x2 =

3.50225628403900
>> abs(x2-x1)
ans =

0.01156877372312

>> x3=x2-f(x2)/df(x2)
x3 =

3.50214740099497
>> abs(x3-x2)
ans =

1.088830440254540e-004
>> x4=x3-f(x3)/df(x3)
x4 =

3.50214739121355
>> abs(x4-x3)
ans =

9.781422338761558e-009

We write the obtained data into a table.

k x(k) |x(k) − x(k−1)|
0 3.4 —
1 3.51382505776211 0.11382505776211 > 10−8

2 3.50225628403900 0.01156877372312 > 10−8

3 3.50214740099497 1.088830440254540e− 004 > 10−8

4 3.50214739121355 9.781422338761558e− 009 ≤ 10−8

The given accuracy ε = 10−8 is achieved in the fourth step where the cal-
culation is terminated. We round the value of x(4) to eight decimal places.

The resulting approximation of the searched root is

x̃ = 3.50214739± 10−8.

The other two roots can be found in analogous way. Approximations of all
roots of the given equation are:

1.03667388± 10−8, 2.47646805± 10−8, 3.50214739± 10−8.
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Exercise

Find all roots of the equation

2x3 − x2 − x− 1 = 0

using the Newton method with the accuracy ε = 10−8.
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Exercise

Find all roots of the equation

2x3 − x2 − x− 1 = 0

using the Newton method with the accuracy ε = 10−8.
Use the MATLAB to solve the problem.
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Exercise

Find all roots of the equation

2x3 − x2 − x− 1 = 0

using the bisection method and the Newton method, both with the
accuracy ε = 10−4.
Compare obtained results.
Use the MATLAB to solve the problem.
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Exercise

Find all roots of the given equation using the bisection method with the
accuracy 10−3 and using the Newton method with the accuracy 10−8.
Compare obtained results.
Use the MATLAB to solve the problem.

1.
5ex − xex − 4 = 0

2.
(x− 1)2 − cos(x)− 2 = 0

3.
x− 3 sin(x)− 1 = 0

4.
ln(x) + x2 − 5x + 5 = 0

5.
x2 − ln(x + 1)− 0.2 = 0

6.
4 cos2(x)− x2 + x = 0

7.
x2 − x− sin(x)− 1 = 0

8.
(x− 0.1)4 − sin2(x)− 1 = 0

9.
ln(x)− (x− 3)2 = 0

10.
x2 − 7 ln(x)− 3 = 0

11.
(x− 1)2 − 2 sin(x) = 0

12.
ex − 7x2 + 2 = 0

13.
ex − x− 4 = 0

14.
ln(x + 2)− x2 + 2.5 = 0

15.
(x− 1)4 − ln(x)− 1 = 0

16.
5 ln(x2) + (x− 2)3 = 0

17.
x2 − 3x + 2− e−x2

= 0

18.
x2 − 2x− e−x2

= 0

19.
3 cos(x) + 1 +

√
x = 0

20.
3 sin2(x)− 1−

√
x = 0

21.
7 ln2(x)− 1−

√
x = 0

22.
arccos

(x
2

)
+ 3x2 − 4 = 0



Worksheets for Numerical methods

Polynomial Interpolation



Worksheets for Numerical methods

30 – Interpolation Řy

The interpolation problem
Given n + 1 pairs (xi, yi) of distinct nodes xi and corresponding val-
ues yi, the problem consists of finding a polynomial pn = pn(x) that
fulfils the interpolation equalities

pn(xi) = yi, i = 0, . . . , n ,

i.e. a polynomial whose graph passes the given points.

There exists unique interpolating polynomial of degree at most n. We in-
troduce three different ways how to find this polynomial.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6 p3(x)

x0

y0

x2

y2

x1

y1

x3

y3

Figure: Interpolating polynomial of degree 3 for given data

i=0 i=1 i=2 i=3

xi 1 4 6 9
yi 2 5 3 4
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Interpolating polynomial in the standard form

The distinct nodes xi and corresponding values yi, i = 0, . . . , n are given.
Substituting the standard form of a polynomial

pn(x) = a0 + a1x + a2x2 + · · ·+ anxn

into the interpolation equalities pn(xi) = yi we obtain the system of linear
equations

a0 + a1xi + a2x2
i + · · ·+ anxn

i = yi, i = 0, . . . , n,

that can be written in the matrix form as

1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1
1 x2 x2

2 . . . xn
2

...
...

... . . . ...
1 xn x2

n . . . xn
n

 ·


a0

a1

a2
...

an

 =



y0

y1

y2
...

yn

 .

The solution of this system of linear equations represents the coefficients
a0, a1, . . . , an ∈ R of the interpolating polynomial.
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Example

Find the interpolating polynomial in the standard form for the data

i=0 i=1

xi 2 4
yi 1 -5

We seek for a linear interpolating polynomial of the form

p1(x) = a0 + a1x

that we substitute into the interpolation equalities pn(xi) = yi :

p1(2) = 1 ⇒ a0 + a1 · 2 = 1
p1(4) = −5 ⇒ a0 + a1 · 4 = −5

The obtained system of linear equations can be written in the matrix form:(
1 2
1 4

)
·
(

a0
a1

)
=

(
1
−5

)
The solution of this system is a0 = 7, a1 = −3.

The result is
p1(x) = 7− 3x .

1 2 3 4

−5

−4

−3

−2

−1

1

2

3

p1(x)

x0

y1

x1

y0

Finally we check that the interpolation equalities are really fulfilled. We
substitute the given nodes xi into the interpolating polynomial.

p1(2) = 7− 3 · 2 = 1
p1(4) = 7− 3 · 4 = −5
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Example

Find the interpolating polynomial in the standard form for the data

i=0 i=1 i=2 i=3

xi 1 4 6 9
yi 2 5 3 4

We seek for a cubic interpolating polynomial

p3(x) = a0 + a1x + a2x2 + a3x3

that we substitute into the interpolation equalities pn(xi) = yi

p3(1) = 2 ⇒ a0 + a1 · 1 + a2 · 12 + a3 · 13 = 2

p3(4) = 5 ⇒ a0 + a1 · 4 + a2 · 42 + a3 · 43 = 5

p3(6) = 3 ⇒ a0 + a1 · 6 + a2 · 62 + a3 · 63 = 3

p3(9) = 4 ⇒ a0 + a1 · 9 + a2 · 92 + a3 · 93 = 4

The system of linear equations can be written in the matrix form:
1 1 1 1
1 4 16 64
1 6 36 216
1 9 81 729

 ·


a0
a1
a2
a3

 =


2
5
3
4


We solve the system and we obtain the interpolating polynomial coeffi-
cients a0 = −2.6, a1 = 5.83, a2 = −1.316, a3 = 0, 083.

The resulting interpolating polynomial is (coefficients are rounded to three
decimal places)

p3(x) = −2.6 + 5.833x− 1.317x2 + 0.083x3 .

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6 p3(x)

x0

y0

x2

y2

x1

y1

x3

y3
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Exercise

Find the interpolating polynomial in the standard form for the data

i=0 i=1 i=2

xi 0 3 4
yi 2 1 5



Worksheets for Numerical methods

35 – Interpolating polynomial in the standard form Řy

Example

Find the interpolating polynomial in the standard form for the data

i=0 i=1 i=2

xi 0 3 4
yi 2 1 5

Use the MATLAB to solve the problem.

At first we input the nodes xi as the vector x and the values yi as the
vector y.

>> x = [0; 3; 4]
>> y = [2; 1; 5]

The coefficients of the interpolating polynomial are the solution of the
system of linear equations.

>> M = [ones(3,1) x x.ˆ2]
M =

1 0 0
1 3 9
1 4 16

>> a = M\y
>> a
a =

2.0000 3.5833 1.0833

The coefficients ai are obviously rational numbers, that is why we write
these as fractions.

>> format rat
>> a
a =

2 -43/12 13/12

The result is
p2(x) = 2− 43

12
x +

13
12

x2 .

We input the coefficients of the interpolating polynomial as the vector p
and plot the graph of the polynomial on the interval [x0, x2] = [0, 4].

>> plot(x,y,’o’)
>> grid on, hold on
>> p = @(x)a(1)+a(2)*x+a(3)*x.ˆ2;
>> fplot(p, [0 4], ’r’)
>> legend(’nodes’,’interpolating polynomial’)
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Exercise

Find the interpolating polynomial in the standard form for the data

i=0 i=1 i=2 i=3

xi 1 4 6 9
yi 2 5 3 4

Use the MATLAB to solve the problem.
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Interpolating polynomial in the Lagrange form

The unique interpolating polynomial can be written in the Lagrange form

pn(x) = y0l0(x) + y1l1(x) + · · ·+ ynln(x),

where l0(x), l1(x), . . . , ln(x) are the Lagrange basis of the interpolation
problem, for i = 1, . . . , n:

li(x) =
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
.

The Lagrange basis have the following properties for i, j = 1, . . . , n:

• li(x) is the polynomial of degree n,

• li(xi) = 1,

• li(xj) = 0 for i 6= j.
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Example

Find the interpolating polynomial in the Lagrange form for the data

i=0 i=1 i=2

xi 0 3 4
yi 2 1 5

Calculate the value of the polynom at the point x = 2.

We write the Lagrange basis corresponding to single nodes:

l0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 3)(x− 4)
(0− 3)(0− 4)

=
1

12
(x− 3)(x− 4),

l1(x) =
(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
=

(x− 0)(x− 4)
(3− 0)(3− 4)

= −1
3

x(x− 4),

l2(x) =
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
=

(x− 0)(x− 3)
(4− 0)(4− 3)

=
1
4

x(x− 3),

The interpolating polynomial is

p2(x) = y0l0(x) + y1l1(x) + y2l2(x)

= 2 · 1
12

(x− 3)(x− 4) + 1 ·
(
−1

3
x(x− 4)

)
+ 5 · 1

4
x(x− 3)

=
1
6
(x− 3)(x− 4)− 1

3
x(x− 4) +

5
4

x(x− 3).

The resulting form of the interpolating polynomial is

p2(x) =
1
6
(x− 3)(x− 4)− 1

3
x(x− 4) +

5
4

x(x− 3) .

We calculate the value of the polynom p2 at the point x = 2.

p2(2) =
1
6
(2− 3)(2− 4)− 1

3
2(2− 4) +

5
4

2(2− 3)

= −5
6
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Example

Plot a graph of the interpolating polynomial from the previous example
together with the given data.
Use the MATLAB to solve the problem.

We input the given data.

>> x = [0; 3; 4]
>> y = [2; 1; 5]

We plot the given discrete points and the graph of the interpolating
polynomial.

>> plot(x,y,’o’)
>> grid on, hold on
>> p = @(x) 1/6*(x-3).*(x-4)-1/3*x.*(x-4)+5/4*x.*(x-3)
>> fplot(p,[0 4], ’r’)
>> legend(’nodes’,’interpolating polynomial’)
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Example

Find the interpolating polynomial in the Lagrange form for the data

i=0 i=1 i=2 i=3

xi 1 4 6 9
yi 2 5 3 4

The Lagrange basis corresponding to single nodes is:

l0(x) =
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
=

(x− 4)(x− 6)(x− 9)
(1− 4)(1− 6)(1− 9)

= − 1
120

(x− 4)(x− 6)(x− 9),

l1(x) =
(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)
=

(x− 1)(x− 6)(x− 9)
(4− 1)(4− 6)(4− 9)

=
1

30
(x− 1)(x− 6)(x− 9),

l2(x) =
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
=

(x− 1)(x− 4)(x− 9)
(6− 1)(6− 4)(6− 9)

= − 1
30

(x− 1)(x− 4)(x− 9),

l3(x) =
(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
=

(x− 1)(x− 4)(x− 6)
(9− 1)(9− 4)(9− 6)

=
1

120
(x− 1)(x− 4)(x− 6),

The interpolating polynomial is:

p3(x) =y0l0(x) + y1l1(x) + y2l2(x) + y3l3(x)

=2 ·
(
− 1

120
(x− 4)(x− 6)(x− 9)

)
+ 5 · 1

30
(x− 1)(x− 6)(x− 9) + 3 ·

(
− 1

30
(x− 1)(x− 4)(x− 9)

)
+ 4 · 1

120
(x− 1)(x− 4)(x− 6)

=− 1
60

(x− 4)(x− 6)(x− 9) +
1
6
(x− 1)(x− 6)(x− 9)− 1

10
(x− 1)(x− 4)(x− 9) +

1
30

(x− 1)(x− 4)(x− 6)

The resulting form of the interpolating polynomial is

p3(x) =− 1
60

(x− 4)(x− 6)(x− 9) +
1
6
(x− 1)(x− 6)(x− 9)− 1

10
(x− 1)(x− 4)(x− 9) +

1
30

(x− 1)(x− 4)(x− 6)
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Exercise

Find the interpolating polynomial in the Lagrange form for the data

i=0 i=1 i=2

xi 1 2 3
yi 4 5 -1
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Interpolating polynomial in the Newton form

The interpolating polynomial of degree n in the Newton form is defined by the formula

pn(x) =y0 + f [x1, x0](x− x0) + f [x2, x1, x0](x− x0)(x− x1) + f [x3, x2, x1, x0](x− x0)(x− x1)(x− x2) + · · ·+ f [xn, . . . , x0](x− x0)(x− x1) · · · (x− xn−1),

where f [x1, x0] is the 1st divided difference, f [x2, x1, x0] is the 2nd divided difference, up to f [xn, . . . , x0] is the n-th divided difference.

Example for n = 4.
The calculation of the divided differences for n = 4 is realized in the following table:

1st 2nd 3rd 4th
i xi yi f [xi+1, xi] f [xi+2, xi+1, xi] f [xi+3, xi+2, xi+1, xi] f [xi+4, xi+3, xi+2, xi+1, xi]

0 x0 f0 f [x1, x0] =
y1−y0
x1−x0

f [x2, x1, x0] =
f [x2,x1]− f [x1,x0]

x2−x0
f [x3, x2, x1, x0] =

f [x3,x2,x1]− f [x2,x1,x0]
x3−x0

f [x4, x3, x2, x1, x0] =
f [x4,x3,x2,x1]− f [x3,x2,x1,x0]

x4−x0

1 x1 f1 f [x2, x1] =
y2−y1
x2−x1

f [x3, x2, x1] =
f [x3,x2]− f [x2,x1]

x3−x1
f [x4, x3, x2, x1] =

f [x4,x3,x2]− f [x3,x2,x1]
x4−x1

2 x2 f2 f [x3, x2] =
y3−y2
x3−x2

f [x4, x3, x2] =
f [x4,x3]− f [x3,x2]

x4−x2

3 x3 f3 f [x4, x3] =
y4−y3
x4−x3

4 x4 f4

The interpolating polynomial in the Newton form for n = 4 is defined as

p4(x) =y0 + f [x1, x0](x− x0) + f [x2, x1, x0](x− x0)(x− x1) + f [x3, x2, x1, x0](x− x0)(x− x1)(x− x2) + f [x4, x3, x2, x1, x0](x− x0)(x− x1)(x− x2)(x− x3) .
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Example

Find the interpolating polynomial in the Newton form for the data

i=0 i=1 i=2

xi 0 3 4

fi 2 1 5

The calculation of the divided differences is realized in the following table:

i xi yi 1st 2nd

0 0 2 −1
3

13
12

1 3 1 4

2 4 5

Using the values from the first row of the table we can write the interpo-
lating polynomial.

p2(x) = 2− 1
3
(x− 0) +

13
12

(x− 0)(x− 3) = 2− 1
3

x +
13
12

x(x− 3)

−1 1 2 3 4 5
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−1

1
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44 – Interpolating polynomial in the Newton form Řy

Example

Add the node x3 = 1 with the value y3 = 3
2 to the data from the previous

example and find the interpolating polynomial in the Newton form.

We add the node and the value to the table of the divided differences and
calculate the missing 1st divide difference f [x3, x2], the 2nd divided differ-
ence f [x3, x2, x1] and the 3rd divided difference f [x3, x2, x1, x0].

xi yi 1st 2nd 3rd

i = 0 0 2 −1
3

13
12

1
3

i = 1 3 1 4 17
12

i = 2 4 5 7
6

i = 3 1 3
2

Now we add the corresponding next term to the interpolating polynomial.

p3(x) = 2− 1
3
(x− 0) +

13
12

(x− 0)(x− 3) +
1
3
(x− 0)(x− 3)(x− 4).

The resulting interpolating polynomial is

p3(x) = 2− 1
3

x +
13
12

x(x− 3) +
1
3

x(x− 3)(x− 4).

−1 1 2 3 4 5

−2

−1

1

2

3

4

5

6 p3(x)

x0

y0

x1

y1

x2

y2

y3

x3

Compare this graph with the graph from the previous example – the added
node has changed the shape of the whole graph.
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Example

Find the interpolating polynomial in the Newton form for the data

i=0 i=1 i=2

xi 0 3 4

fi 2 1 5

Use the MATLAB to solve the problem.

>> x=[0,3,4]
x =

0 3 4
>> y=[2,1,5]
y =

2 1 5
>> format rat
>> n=length(x);

The 0th divided differences are the function values in the nodes, i.e. yi.
The 1st divided differences are given by the formula f [xi+1, xi] =

yi+1−yi
xi+1−xi

.

>> df0=y
df0 =

2 1 5
>> for i=1:n-1,df1(i)=(df0(i+1)-df0(i))/(x(i+1)-x(i));end
>> df1
df1 =

-1/3 4
>> for i=1:n-2,df2(i)=(df1(i+1)-df1(i))/(x(i+2)-x(i));end
>> df2
df2 =

13/12

Now we write the interpolating polynomial and plot its graph together
with the given data.

>> format short
>> xg=x(1):0.01:x(3)
xg =

0 0.0100 0.0200 . . . 3.9900 4.0000
>> yg=df0(1)+df1(1)*(xg-x(1))+df2(1)*(xg-x(1)).*(xg-x(2))
yg =

2.0000 1.9643 1.9288 . . . 4.9493 5.0000
>> plot(x,y,’go’)
>> hold on
>> plot(xg,yg)
>> legend(’nodes’,’interpolating polynomial’)
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46 – Interpolating polynomial in the Newton form 1/2 Řy

Example

Add the node x3 = 1 with the value y3 = 3
2 to the data from the previous example and find the interpolating polynomial in the Newton form.

Use the MATLAB to solve the problem.

We add the new data into the vectors x and y.

>> x=[x, 1]
x =

0 3 4 1
>> y=[y, 1.5]
y =

2.0000 1.0000 5.0000 1.5000

We calculate the missing 1st divided difference f [x3, x2] and the 2nd one f [x3, x2, x1].

>> format rat
>> n=length(x);
>> df0=y
df0 =

2 1 5 3/2
>> for i=1:n-1, df1(i)=(df0(i+1)-df0(i))/(x(i+1)-x(i)); end
>> df1
df1 =

-1/3 4 7/6
>> for i=1:n-2, df2(i)=(df1(i+1)-df1(i))/(x(i+2)-x(i)); end
>>df2
df2 =

13/12 17/12
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We calculate the 3rd divided difference f [x3, x2, x1, x0].

>> for i=1:n-3, df3(i)=(df2(i+1)-df2(i))/(x(i+3)-x(i)); end
>> df3
df3 =

1/3

We extend the interpolating polynomial by the additional term and calculate the values of the polynomial in the points xg.

>> xg=min(x):0.01:max(x);
>> yg=df0(1)+df1(1)*(xg-x(1))+df2(1)*(xg-x(1)).*(xg-x(2))+df3(1)*(xg-x(1)).*(xg-x(2)).*(xg-x(3))
yg =

2.0000 2.0040 2.0078 ... 4.9361 5.0000
>> plot(x,y,’go’)
>> hold on
>> plot(xg,yg)
>> legend(’nodes’,’interpolating polynomial’)
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48 – Interpolating polynomial in the Newton form Řy

Exercise

Find the interpolating polynomial in the Newton form for the data

i=0 i=1 i=2

xi 1 2 3
yi 4 5 -1
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49 – Interpolating polynomial in the Newton form Řy

Exercise

Find the interpolating polynomial in the Newton form for the data

i=0 i=1 i=2 i=3

xi 1 4 6 9
yi 2 5 3 4

Use the MATLAB to solve the problem.
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50 – Interpolating polynomial 1/2 Řy

Exercise

Find the interpolating polynomial in the standard, Lagrange and New-
ton forms for the data. Use the MATLAB to solve the problem.

1.

xi 4.5 6 7.5 8 8.5
yi -37 44 20.1 34.7 -29.1

2.

xi -3 -2.5 -1 0 0.5
yi 36.7 -12.8 -42.7 -30.1 -45.1

3.

xi -3 -2.5 -1.5 -1 0.5
yi 32.3 -45.4 9.7 44.9 -21.2

4.

xi -6.5 -6 -5.5 -5 -3.5
yi -23.6 49.9 -28.9 -0.2 -21

5.

xi -5.5 -4 -2.5 -1.5 -1
yi -48.6 -21.2 31.6 48.5 -48.3

6.

xi -3.5 -2.5 -1.5 -1 0.5
yi 25.3 15.9 -28.6 10.2 10.4

7.

xi 1 1.5 2.5 3 4
yi 18.5 17.7 37.6 -48.8 -19

8.

xi -6.5 -6 -4.5 -3 -2.5
yi -48.9 -27.3 1.6 -4.2 20.3

9.

xi -4 -3 -2.5 -2 -1
yi 27 -18.7 13.8 48.6 0.2
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10.

xi 4.5 6 7.5 8 9.5
yi -34.4 -37.8 26.2 22.1 15.1

11.

xi -4.5 -3.5 -2 -1.5 -0.5
yi -46.5 -41.9 35 -16 -3.4

12.

xi -0.5 0 1.5 2.5 4
yi 49.2 -12.7 3.1 -31.9 0.1

13.

xi -6 -5 -3.5 -2 -1.5
yi 6.5 46.9 -47.7 37 -47.4

14.

xi -6 -5.5 -4 -3.5 -2
yi 2.1 39.5 44.2 -16.5 -6.3

15.

xi -2 -1.5 -1 0 1.5
yi -14.2 -21.5 36.8 12.6 -25.9

16.

xi -5.5 -4.5 -4 -2.5 -1.5
yi -47.8 -23.8 -38.4 -43.1 35.2

17.

xi -3.5 -3 -1.5 -0.5 0
yi -48.8 38.9 36.6 -24.6 6.9

18.

xi -0.5 0.5 1 2 3.5
yi 48 29.1 -34.8 33.3 -30.9

19.

xi -1 0.5 2 3 4
yi 10.8 -32.5 -49.8 29 1.3
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Approximation by the least-squares method
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53 – Approximation by the least-squares method, linear approximation Řy

The approximation problem
Given n pairs (xi, yi) of distinct nodes xi and corresponding values yi,
the problem consists of finding a function ϕ(x) that fulfils

ϕ(xi) ≈ yi, i = 1, . . . , n .

Linear approximation

Assume we are given n pairs (xi, yi), i = 1, . . . , n of distinct nodes xi and
corresponding values yi. We want to find such values c1, c2 ∈ R, that the
linear function ϕ(x) = c1 + c2x is the best approximation of the given data
in the least-squares sense.

xxxxx
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The following figure illustrates the given data and a straight line that re-
presents the searched linear function ϕ(x) = c1 + c2x.

xxxxx

y
ϕ(x)

x1

y1

ϕ(x1)

x2

y2

ϕ(x2)

x3

y3

ϕ(x3)

x4

y4
ϕ(x4)

ϕ(x)

We want to find the coefficients c1, c2 of the linear function ϕ(x), for which
the sum of areas of squares in the figure above is minimized. Because the
area of the i-th square is (c1 + c2xi − yi)

2, we are looking for a minimum
of the price function

Φ(c1, c2) =
n

∑
i=1

(c1 + c2xi − yi)
2 .

The price function Φ is quadratic, therefore its minimum exists and is
unique.

We are to solve the problem to find a minimum of the function of two
variables.
The minimum [c1, c2] of the price function Φ must fulfil the equations

∂

∂c1
Φ(c1, c2) = 0,

∂

∂c2
Φ(c1, c2) = 0.

Having calculated the partial derivatives we obtain

2
n

∑
i=1

(c1 + c2xi − yi) = 0,

2
n

∑
i=1

(c1 + c2xi − yi)xi = 0,

that is the system of linear equations for the unknown coefficients c1, c2:

c1

n

∑
i=1

1 + c2

n

∑
i=1

xi =
n

∑
i=1

yi,

c1

n

∑
i=1

xi + c2

n

∑
i=1

x2
i =

n

∑
i=1

xiyi,

This system is called the normal system of equations and can be rewritten
in a matrix form: 

n

∑
i=1

1
n

∑
i=1

xi

n

∑
i=1

xi

n

∑
i=1

x2
i

 ·
(

c1
c2

)
=


n

∑
i=1

yi

n

∑
i=1

yixi
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Example

Approximate the data from the table

xi -2 -1 1 2

yi 10 4 6 3

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x.

We write the normal system of equations in the matrix form
4

∑
i=1

1
4

∑
i=1

xi

4

∑
i=1

xi

4

∑
i=1

x2
i

 ·
(

c1
c2

)
=


4

∑
i=1

yi

4

∑
i=1

yixi


and calculate the sums:

4

∑
i=1

1 =1 + 1 + 1 + 1 = 4

4

∑
i=1

xi =− 2 + (−1) + 1 + 2 = 0

4

∑
i=1

x2
i =(−2)2 + (−1)2 + 12 + 22 = 10

4

∑
i=1

yi =10 + 4 + 6 + 3 = 23

4

∑
i=1

yixi =10 · (−2) + 4 · (−1) + 6 · 1 + 3 · 2 = −12

The normal system of equations is:(
4 0
0 10

)
·
(

c1
c2

)
=

(
23
−12

)
The unique solution of this system is c1 = 23

4 , c2 = −6
5 .

Therefore the linear function that represents the best linear approximation
of the given data in the least-squares method sense is

ϕ(x) =
23
4
− 6

5
x = 5.75− 1.2x .

-3 -2 -1 0 1 2

1
2
3
4
5
6
7
8
9

10

ϕ(x)
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56 – Approximation by the least-squares method, linear approximation Řy

Example

Approximate the data from the table

xi -2 -1 1 2

yi 10 4 6 3

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x.

Use the MATLAB to solve the problem.

We input the given data in the MATLAB.

>> x=[-2 -1 1 2];
>> y=[10 4 6 3];
>> n=length(x)
n =

4

We also need the matrix of the normal system of equations and the right
hand sides vector.

>> M=[n sum(x); sum(x) sum(x.ˆ2)]
M =

4 0
0 10

>> v=[sum(y); sum(y.*x)]
v =

23
-12

We solve the normal system of equations using one of many methods that
the MATLAB offers.

>> c=M\v
c =

5.7500
-1.2000

The best approximation in the least-squares sense has the form:

ϕ(x) = 5.75− 1.2x

Finally we plot the given data as well as the found linear approximation

>> hold on
>> plot(x,y,’ro’)
>> xg=x(1):0.01:x(n)
>> yg=c(1)+c(2)*xg;
>> plot(xg,yg)
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57 – Approximation by the least-squares method, linear approximation Řy

Exercise

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x.
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58 – Approximation by the least-squares method, linear approximation Řy

Exercise

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x.

Use the MATLAB to solve the problem.
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Approximation by two functions

Assume we are given n pairs (xi, yi), i = 1, . . . , n of distinct nodes xi and
corresponding values yi as well as two functions ϕ1(x) a ϕ2(x). We want
to find such values c1, c2 ∈ R, that the function ϕ(x) = c1ϕ1(x) + c2ϕ2(x)
is the best approximation of the given data in the least-squares sense.
Analogously to the case of linear approximation, we obtain the unknown
coefficients c1, c2 ∈ R as the minimum of the price function

Φ(c1, c2) =
n

∑
i=1

(c1ϕ1(xi) + c2ϕ2(xi)− yi)
2 ,

i.e. as the solution of the normal system of equations

c1

n

∑
i=1

(ϕ1(xi))
2 + c2

n

∑
i=1

ϕ1(xi) · ϕ2(xi) =
n

∑
i=1

yi · ϕ1(xi),

c1

n

∑
i=1

ϕ2(xi) · ϕ1(xi) + c2

n

∑
i=1

(ϕ2(xi))
2 =

n

∑
i=1

yi · ϕ2(xi)

or in the matrix form
n

∑
i=1

(ϕ1(xi))
2

n

∑
i=1

ϕ1(xi) · ϕ2(xi)

n

∑
i=1

ϕ2(xi) · ϕ1(xi)
n

∑
i=1

(ϕ2(xi))
2

 ·
(

c1
c2

)
=


n

∑
i=1

yi · ϕ1(xi)

n

∑
i=1

yi · ϕ2(xi)

 .

For example, if we want to approximate by the function

ϕ(x) = c1x2 + c1 sin(x) ,

then the normal system of equations is:

c1

n

∑
i=1

x4
i + c2

n

∑
i=1

x2
i sin(xi) =

n

∑
i=1

yix2
i ,

c1

n

∑
i=1

x2
i sin(xi) + c2

n

∑
i=1

sin2(xi) =
n

∑
i=1

yi sin(xi)

or in the matrix form
n

∑
i=1

x4
i

n

∑
i=1

x2
i sin(xi)

n

∑
i=1

x2
i sin(xi)

n

∑
i=1

sin2(xi)

 ·
(

c1
c2

)
=


n

∑
i=1

yix2
i

n

∑
i=1

yi sin(xi)

 .
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Example

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 ln(x) + c2x.

We write the normal system of equations in the matrix form
6

∑
i=1

ln2(xi)
6

∑
i=1

xi ln(xi)

6

∑
i=1

xi ln(xi)
6

∑
i=1

x2
i

 ·
(

c1
c2

)
=


6

∑
i=1

yi ln(xi)

6

∑
i=1

yixi


and calculate the sums:

6

∑
i=1

ln2(xi) = ln2(1) + ln2(2) + ln2(3) + ln2(5) + ln2(7) + ln2(10) = 13.3662

6

∑
i=1

xi ln(x1) =1 · ln(1) + 2 · ln(2) + 3 · ln(3) + 5 · ln(5)

+7 · ln(7) + 10 · ln(10) = 49.3765
6

∑
i=1

x2
i =12 + 22 + 32 + 52 + 72 + 102 = 188

6

∑
i=1

yi ln(xi) =0 · ln(1) + 3 · ln(2) + 5 · ln(3) + 8 · ln(5)

+8 · ln(7) + 7 · ln(10) = 52.1334
6

∑
i=1

yixi =0 · 1 + 3 · 2 + 5 · 3 + 8 · 5 + 8 · 7 + 7 · 10 = 187

The normal system of equations is:(
13.3662 49.3765
49.3765 188

)
·
(

c1
c2

)
=

(
52.1334

187

)
The unique solution of this system is c1 = 7.5896, c2 = −0.9987.
Therefore the best approximation of the given data in the least-squares
method sense has the form

ϕ(x) = 7.58961 ln(x)− 0.9987x .

0 1 2 3 4 5 6 7 8 9 10
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1
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61 – Approximation by the least-squares method, two functions Řy

Example

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 ln(x) + c2x.

Use the MATLAB to solve the problem.

We input the given data in the MATLAB.

>> x=[1,2,3,5,7,10]
>> y=[0,3,5,8,8,7];
>> n=length(x)
n =

6

We also need the matrix of the normal system of equations and the right
hand sides vector.

>> M=[sum(log(x).ˆ2 sum(log(x)*x); sum(x.*log(x)) sum(x.ˆ2)]
M =

13.3662 49.3765
49.3765 188.0000

>> v=[sum(y.*log(x)); sum(y.*x)]
v =

52.1334
187.0000

We solve the normal system of equations using one of many methods that
the MATLAB offers.

>> c=M\v
c =

7.5896
-0.9987

The best approximation in the least-squares sense has the form:

ϕ(x) = 7.58961 ln(x)− 0.9987x .

Finally we plot the given data and the found approximation

>> hold on
>> plot(x,y,’ro’)
>> xg=x(1):0.01:x(n)
>> yg=c(1)*log(xg)+c(2)*xg;
>> plot(xg,yg)
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62 – Approximation by the least-squares method, two functions Řy

Exercise

Approximate the data from the table

xi 0 1 2 3 4

yi 0 2 4 3 1

in the sense of the least-squares method by the function

ϕ(x) = c1 sin(x) + c2x.
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63 – Approximation by the least-squares method, two functions Řy

Exercise

Approximate the data from the table

xi 0 1 2 3 4

yi 0 2 4 3 1

in the sense of the least-squares method by the function

ϕ(x) = c1 sin(x) + c2x.

Use the MATLAB to solve the problem.
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Approximation by k functions

Assume we are given n pairs (xi, yi), i = 1, . . . , n of distinct nodes xi and corresponding values yi as well as k functions ϕ1(x), ϕ2(x), . . ., ϕk(x). We want to
find such values c1, c2, . . . ck ∈ R, that the function ϕ(x) = c1ϕ1(x) + c2ϕ2(x) + · · ·+ ck ϕk(x) is the best approximation of the given data in the least-squares
sense.
These coefficients c1, c2, . . . , ck ∈ R we obtain as the solution of the normal system of equations

c1

n

∑
i=1

(ϕ1(xi))
2 + c2

n

∑
i=1

ϕ1(xi) · ϕ2(xi) + c3

n

∑
i=1

ϕ1(xi) · ϕ3(xi) + · · ·+ ck

n

∑
i=1

ϕ1(xi) · ϕk(xi) =
n

∑
i=1

yi · ϕ1(xi),

c1

n

∑
i=1

ϕ2(xi) · ϕ1(xi) + c2

n

∑
i=1

(ϕ2(xi))
2 + c3

n

∑
i=1

ϕ2(xi) · ϕ3(xi) + · · ·+ ck

n

∑
i=1

ϕ2(xi) · ϕk(xi) =
n

∑
i=1

yi · ϕ2(xi),

...

c1

n

∑
i=1

ϕk(xi) · ϕ1(xi) + c2

n

∑
i=1

ϕk(xi) · ϕ2(xi) + c3

n

∑
i=1

ϕk(xi) · ϕ3(xi) + · · ·+ ck

n

∑
i=1

(ϕk(xi))
2 =

n

∑
i=1

yi · ϕk(xi).
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For k = 3: We want to find the values c1, c2, c3 ∈ R for the function ϕ(x) = c1ϕ1(x) + c2ϕ2(x) + ck ϕ3(x). The normal system of equations is

c1

n

∑
i=1

(ϕ1(xi))
2 + c2

n

∑
i=1

ϕ1(xi) · ϕ2(xi) + c3

n

∑
i=1

ϕ1(xi) · ϕ3(xi) =
n

∑
i=1

yi · ϕ1(xi),

c1

n

∑
i=1

ϕ2(xi) · ϕ1(xi) + c2

n

∑
i=1

(ϕ2(xi))
2 + c3

n

∑
i=1

ϕ2(xi) · ϕ3(xi) =
n

∑
i=1

yi · ϕ2(xi),

c1

n

∑
i=1

ϕ3(xi) · ϕ1(xi) + c2

n

∑
i=1

ϕ3(xi) · ϕ2(xi) + c3

n

∑
i=1

(ϕ3(xi))
2 =

n

∑
i=1

yi · ϕ3(xi)

or in the matrix form 

n

∑
i=1

(ϕ1(xi))
2

n

∑
i=1

ϕ1(xi) · ϕ2(xi)
n

∑
i=1

ϕ1(xi) · ϕ3(xi)

n

∑
i=1

ϕ2(xi) · ϕ1(xi)
n

∑
i=1

(ϕ2(xi))
2

n

∑
i=1

ϕ2(xi) · ϕ3(xi)

n

∑
i=1

ϕ3(xi) · ϕ1(xi)
n

∑
i=1

ϕ3(xi) · ϕ2(xi)
n

∑
i=1

(ϕ3(xi))
2


·

c1
c2
c3

 =



n

∑
i=1

yi · ϕ1(xi)

n

∑
i=1

yi · ϕ2(xi)

n

∑
i=1

yi · ϕ3(xi)


.
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Example

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x + c3x2.

We write the normal system of equations in the matrix form

6

∑
i=1

1
6

∑
i=1

xi

6

∑
i=1

x2
i

6

∑
i=1

xi

6

∑
i=1

x2
i

6

∑
i=1

x3
i

6

∑
i=1

x2
i

6

∑
i=1

x3
i

6

∑
i=1

x4
i


·

c1
c2
c3

 =



6

∑
i=1

yi

6

∑
i=1

yixi

6

∑
i=1

yix2
i


and calculate the sums:

6

∑
i=1

1 =1 + 1 + 1 + 1 + 1 + 1 = 6

6

∑
i=1

xi =1 + 2 + 3 + 5 + 7 + 10 = 28

6

∑
i=1

x2
i =12 + 22 + 32 + 52 + 72 + 102 = 188

6

∑
i=1

x3
i =13 + 23 + 33 + 53 + 73 + 103 = 1504

6

∑
i=1

x4
i =14 + 24 + 34 + 54 + 74 + 104 = 13124

6

∑
i=1

yi =0 + 3 + 5 + 8 + 8 + 7 = 31

6

∑
i=1

yixi =0 · 1 + 3 · 2 + 5 · 3 + 8 · 5 + 8 · 7 + 7 · 10 = 187

6

∑
i=1

yix2
i =0 · 12 + 3 · 22 + 5 · 32 + 8 · 52 + 8 · 72 + 7 · 102 = 1349

The normal system of equations is: 6 28 188
28 188 1504

188 1504 13124

 ·(c1
c2

)
=

 31
187

1349


The unique solution of this system is c1 = −2.63963, c2 = 3.16090,
c3 = −0.22163.
The best quadratic approximation of the given data in the least-squares
method sense) has the form

ϕ(x) = −2.63963 + 3.16090x− 0.22163x2 .

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7

ϕ(x)
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Example

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x + c3x2.

Use the MATLAB to solve the problem.

We input the given data in the MATLAB.

>> x=[1,2,3,5,7,10];
>> y=[0,3,5,8,8,7];
>> n=length(x)
n =

6

We also need the matrix of the normal system of equations and the right hand sides vector.

>> M=[n sum(x) sum(x.ˆ2); sum(x) sum(x.ˆ2) sum(x.ˆ3); sum(x.ˆ2) sum(x.ˆ3) sum(x.ˆ4)]
M =

6 28 188
28 188 1504
188 1504 13124

>> v=[sum(y); sum(y.*x); sum(y.*x.ˆ2)]
v =

31
187
1349
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We solve the normal system of equations using one of many methods that the MATLAB offers.

>> c=M\v
c =

-2.6396
3.1609
-0.2216

The best approximation in the least-squares sense has the form:

ϕ(x) = −2.6396 + 3.1609x− 0.2216x2 .

We plot the given data and the found quadratic approximation

>> hold on
>> plot(x,y,’ro’)
>> xg=x(1):0.01:x(n);
>> yg=c(1)+c(2)*xg+c(3)*x.ˆ2;
>> plot(xg,yg)

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9
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Exercise

Approximate the data from the table

xi 0 1 2 3 4

yi 0 2 4 3 1

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x + c3x2.
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Exercise

Approximate the data from the table

xi 0 1 2 3 4

yi 0 2 4 3 1

in the sense of the least-squares method by the function

ϕ(x) = c1 + c2x + c3x2.

Use the MATLAB to solve the problem.
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Example

Approximate the data from the table

xi -2.3 -1.3 0.6 1.5 2.8 3.3 4.6 5.9 7.8 9.3

yi -51 -15 8 31 -47 -11 -101 -110 -223 -307

in the sense of the least-squares method

a) by the linear function
ζ(x) = d2 + d1x,

b) by the function
ϕ(x) = c1 sin(x) + c2x2.

Compare the obtained results both graphically and numerically.
Use the MATLAB to solve the problem.

a)
We define the functions ζ1(x) = 1 and ζ2(x) = x in the MATLAB as the variables p1 and p2, the matrix of the normal system Ga and the right hand sides
vector da.

>> p1=@(x)x.ˆ0;
>> p2=@(x)x;
>> Ga=[sum(p1(x).ˆ2) sum(p1(x).*p2(x));sum(p2(x).*p1(x)) sum(p2(x).ˆ2)]
Ga =

10.0000 32.2000
32.2000 231.6200

>> da=[sum(p1(x).*y);sum(p2(x).*y)]
da =
1.0e+003 *
-0.8260
-5.6879
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We used the equality 1 = x0 to define the function p1 in the MATLAB. If we had not applied this little technical trick, we would have had to define the
element in the first row and the first column of the matrix Ga manually as ∑n

1 ζ2
2(x) = ∑n

1 1 = 10 (the number of the nodes in the table).
We solve the normal system of equations.

>> d=Ga\da
-6.3842
-23.6695

The best approximation in the least-squares sense has the form (the coefficients are rounded to four decimal places):

ζ(x) = −6.3842− 23.6695x.

b)
In this case, we denote ϕ1(x) = sin x and ϕ2(x) = x2. We write the normal system of equations in the matrix form. We define the auxiliary matrix Gb and
the vector db.

(
∑n

i=1 (ϕ1(xi))
2 ∑n

i=1 ϕ1(xi) · ϕ2(xi)

∑n
i=1 ϕ2(xi) · ϕ1(xi) ∑n

i=1 (ϕ2(xi))
2

)
·
(

c1

c2

)
=

(
∑n

i=1 yi · ϕ1(xi)

∑n
i=1 yi · ϕ2(xi)

)
Ga ·

(
c1
c2

)
= da

We solve this system of linear equations and obtain the values of the coefficients c1, c2 such that the function ϕ(x) is the best approximation of the given
data in the least-squares sense.
We input the given data in the MATLAB.

>> x=[-2.3 -1.3 0.6 1.5 2.8 3.3 4.6 5.9 7.8 9.3];
>> y=[-51 -15 8 31 -47 -11 -101 -110 -223 -307];

Then we define the functions ϕ1(x) = sin x and ϕ2(x) = x2 in the MATLAB as the variables f1 and f2.

>> f1=@(x)sin(x);
>> f2=@(x)x.ˆ2;
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We also need the matrix of the normal system of equations Ga and the right hand sides vector da.

>> Gb=[sum(f1(x).ˆ2) sum(f1(x).*f2(x));
sum(f2(x).*f1(x)) sum(f2(x).ˆ2)]
Gb =
1.0e+004 *

0.0005 0.0035
0.0035 1.3058

>> db=[sum(f1(x).*y);sum(f2(x).*y)]
db =
1.0e+004 *
-0.0045
-4.6797

We solve the normal system of equations using one of many methods that the MATLAB offers.

>> c=Gb\db
16.2406
-3.6277

The best approximation in the least-squares sense has the form (the coefficients are rounded to four decimal places):

ϕ(x) = 16.2406 sin x− 3.6277x2.
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The comparison of the approximations
Now we can compare the sums of squares of the distances between the obtained approximations and the given data (i.e. the values of the price functions)

10

∑
i=1

(ϕ(xi)− yi)
2,

10

∑
i=1

(ζ(xi)− yi)
2.

We input the obtained approximations as the variables f and p. Let us note that we have input the calculated coefficients c1, c2 (or d1, d2) as the variable
(vector) c (or d). Hence, the coefficients values are components of these vectors c(1) and c(2) (or d(1), d(2)).

>> f=@(x)c(1)*f1(x)+c(2)*f2(x);
>> p=@(x)d(1)*p1(x)+d(2)*p2(x);

We calculate the sums in the MATLAB.

>> sum((f(x)-y).ˆ2)
ans =
3.4327e+003

>> sum((p(x)-y).ˆ2)
ans =
3.2557e+004

Because 3432 < 32557, the function ϕ(x) is better approximation than the function ζ(x).
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Finally we plot the graphs of the obtained approximations ϕ(x), ζ(x) and the discrete point of the given data. Both of these graphs illustrate that the
function ϕ(x) is better approximation of the the given data.

>> x1=-2.3:0.1:9.3; %we make the vector covering all given nodes to depict the graph, the step is 0.1
>> plot(x,y,’go’,x1,f(x1),’b-’,x1,p(x1),’k-’) %we depict the given data as the green circles and the obtained

approximations as the blue (or black) line
>> legend(’given data’,’approximation f’,’approximation p’) %we add the legend to the graph
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Exercise

Approximate the data from the table

xi 1 2 3 5 7 10

yi 0 3 5 8 8 7

in the sense of the least-squares method

a) by the linear function

ζ(x) = a1 + a2x,

b) by the function
ϕ(x) = b1 ln(x) + b2x,

c) by the quadratic function

θ(x) = c1 + c2x + c3x2.

Compare the obtained results both graphically and numerically.
Use the MATLAB to solve the problem.
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Exercise

Approximate the data from the table

xi 1 2 3.5 4.5 6 7 7.5

yi 4.2 5 5.5 7 7.8 8.5 8.1

in the sense of the least-squares method

a) by the linear function

ζ(x) = a1 + a2x,

b) by the function
ϕ(x) = b1ex + b2x,

c) by the quadratic function

θ(x) = c1 + c2x + c3x2.

Compare the obtained results both graphically and numerically.
Use the MATLAB to solve the problem.
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Exercise

Approximate the data from the table in the sense of the least-squares
method

a) by the linear function

ζ(x) = d1 + d2x,

b) by the function
ϕ(x),

c) by the quadratic function

θ(x) = a1 + a2x + a3x2.

Compare the obtained results both graphically and numerically.
Use the MATLAB to solve the problem.

1.

ϕ(x) = c1
1
x
+ c2

xi -3 -2.5 -1.5 -1 0.5

yi 32.3 -45.4 9.7 44.9 -21.2

2.

ϕ(x) = c1ex + c2
1
x

xi -6.5 -6 -5.5 -5 -3.5

yi -23.6 49.9 -28.9 -0.2 -21

3.

ϕ(x) = c1 + c2 sin(x)
xi -3.5 -2.5 -1.5 -1 0.5

yi 25.3 15.9 -28.6 10.2 10.4

4.

ϕ(x) = c1 cos(x) + c2
xi 1 1.5 2.5 3 4

yi 18.5 17.7 37.6 -48.8 -19

5.

ϕ(x) = c1x + c2ex xi -6.5 -6 -4.5 -3 -2.5

yi -48.9 -27.3 1.6 -4.2 20.3

6.

ϕ(x) = c1 cos(x) + c2x
xi -4 -3 -2.5 -2 -1

yi 27 -18.7 13.8 48.6 0.2

7.

ϕ(x) = c1x2 + c2 ln(x)
xi 4.5 6 7.5 8 8.5

yi -37 44 20.1 34.7 -29.1
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8.

ϕ(x) = c1x2 + c2
xi -3 -2.5 -1 0 0.5

yi 36.7 -12.8 -42.7 -30.1 -45.1

9.

ϕ(x) = c1ex + c2x2 xi -5.5 -4 -2.5 -1.5 -1

yi -48.6 -21.2 31.6 48.5 -48.3

10.

ϕ(x) = c1 + c2 cos(x)
xi -4.5 -3.5 -2 -1.5 -0.5

yi -46.5 -41.9 35 -16 -3.4

11.

ϕ(x) = c1 ln(x) + c2
xi 4.5 6 7.5 8 9.5

yi -34.4 -37.8 26.2 22.1 15.1

12.

ϕ(x) = c1x3 + c2
xi -6 -5.5 -4 -3.5 -2

yi 2.1 39.5 44.2 -16.5 -6.3

13.

ϕ(x) = c1x2 + c2x
xi -2 -1.5 -1 0 1.5

yi -14.2 -21.5 36.8 12.6 -25.9

14.

ϕ(x) = c1x2 + c2 sin(x)
xi -5.5 -4.5 -4 -2.5 -1.5

yi -47.8 -23.8 -38.4 -43.1 35.2

15.

ϕ(x) = c1 sin(x) + c2x
xi -3.5 -3 -1.5 -0.5 0

yi -48.8 38.9 36.6 -24.6 6.9

16.

ϕ(x) = c1 + c2ex xi -0.5 0.5 1 2 3.5

yi 48 29.1 -34.8 33.3 -30.9

17.

ϕ(x) = c1 cos(x) + c2x2 xi -1 0.5 2 3 4

yi 10.8 -32.5 -49.8 29 1.3
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81 – Numerical differentiation, the first derivative Řy

Given distinct nodes xi and corresponding function values f (xi) of a func-
tion f , the problem is to approximate values of the first derivative f ′(xi)
at the given nodes. Because the value f ′(xi) is the slope of the tangent line
to the graph of the function f at the point [xi, f (xi)], we can approximate
it by a slope of a proper secant line.
Using a secant line corresponding to nodes xi and xi+1 we obtain the for-
ward difference

f ′(xi) ≈
f (xi+1)− f (xi)

xi+1 − xi
.

f (x)

xi xi+1

secant line

tangent line

Using a secant line corresponding to nodes xi−1 and xi we obtain the back-
ward difference

f ′(xi) ≈
f (xi)− f (xi−1)

xi − xi−1
.

f (x)

xixi−1

secant line

tangent line

Using a secant line corresponding to nodes xi−1 and xi+1 we obtain the
central difference

f ′(xi) ≈
f (xi+1)− f (xi−1)

xi+1 − xi−1
.

f (x)

xi−1 xi xi+1

secant line

tangent line

In practice, the central difference is usually the most accurate approxima-
tion of the derivative value.
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Example

Approximate the derivative of the data
i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the forward difference.

We calculate the approximate value of the derivative y′(x1)

y′(x1) =
y2 − y1

x2 − x1
=

50− 40
1− 0

= 10 ,

approximate value of the derivative y′(x3)

y′(x2) =
y3 − y2

x3 − x2
=

20− 50
2− 1

= −30 ,

approximate value of the derivative y′(x3)

y′(x3) =
y4 − y3

x4 − x3
=

25− 20
3− 2

= 5 ,

approximate value of the derivative y′(x4)

y′(x4) =
y5 − y4

x5 − x4
=

30− 25
4− 3

= 5.

Table of the obtained approximate values of the derivatives at the nodes:

xi 0 1 2 3 4

y′(xi) 10 -30 5 5 —

The approximate value of the derivative y′(x5) cannot be calculated by the
forward difference because there is no following node there.

Example

Approximate the derivative of the data
i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the backward difference.

We calculate the approximate value of the derivative y′(x2)

y′(x2) =
y2 − y1

x2 − x1
=

50− 40
1− 0

= 10 ,

approximate value of the derivative y′(x3)

y′(x3) =
y3 − y2

x3 − x2
=

20− 50
2− 1

= −30 ,

approximate value of the derivative y′(x4)

y′(x4) =
y4 − y3

x4 − x3
=

25− 20
3− 2

= 5 ,

approximate value of the derivative y′(x5)

y′(x5) =
y5 − y4

x5 − x4
=

30− 25
4− 3

= 5.

Table of the obtained approximate values of the derivatives at the nodes:

xi 0 1 2 3 4

y′(xi) — 10 -30 5 5

The approximate value of the derivative y′(x1) cannot be calculated by the
backward difference because there is no previous node there.
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Example

Approximate the derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the central difference.

We calculate the approximate value of the derivative y′(x2)

y′(x2) =
y3 − y1

x3 − x1
=

20− 40
2− 0

= −10 ,

approximate value of the derivative y′(x3)

y′(x3) =
y4 − y2

x4 − x2
=

25− 50
3− 1

= −25
2

= −12.5 ,

approximate value of the derivative y′(x4)

y′(x4) =
y5 − y3

x5 − x3
=

30− 20
4− 2

= 5.

Table of the obtained approximate values of the derivatives at the nodes:

xi 0 1 2 3 4

y′(xi) — -10 -12.5 5 —

The approximate values of the derivatives y′(x1) and y′(x5) cannot be cal-
culated by the central difference because there are no required near by
nodes there.

Example

Approximate the derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the central difference at the interior nodes, the forward difference
at the first node and the backward difference at the last node.

All needed approximate values of the derivative y′(xi) were calculated in
previous examples.
Table of the obtained approximate values of the derivatives at the nodes:

xi 0 1 2 3 4

y′(xi) 10 -10 -12.5 5 5
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Example

Approximate the derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

using the central difference at the interior nodes, the forward difference
at the first node and the backward difference at the last node.
Use the MATLAB to solve the problem.

We input the nodes x and the function values y.

>> x=[0 1 2 3 4]
x =

0 1 2 3 4
>> y=[40 50 20 25 30]
y =

40 50 20 25 30

We define the number n of the nodes xi.

>> n=length(x)
n =

5

We calculate the approximate value of the derivative at the node x1 using
the forward difference.

>> yd(1)=(y(2)-y(1))/(x(2)-x(1))
yd =

10

Using the cycle statement we calculate the approximate values of the
derivatives at the interior nodes x2, x3, x4 by the central difference.

>> for i=2:n-1, yd(i)=(y(i+1)-y(i-1))/(x(i+1)-x(i-1)); end

We calculate the approximate value of the derivative at xn using the
backward difference.

>> yd(n)=(y(n)-y(n-1))/(x(n)-x(n-1))
yd =

10.000 -10.0000 -12.5000 5.0000 5.0000

Table of the obtained approximate values of the derivatives at the nodes:

xi 0 1 2 3 4

y′(xi) 10.0000 -10.0000 -12.5000 5.0000 5.0000
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Exercise

Approximate the derivative of the data

xi 2 4 6 8 10 12 14
yi 12.4 5.3 3.2 4.5 7.1 8.6 11.6

using the central difference at the interior nodes, the forward difference
at the first node and the backward difference at the last node.
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Exercise

Approximate the derivative of the data

xi 2 4 6 8 10 12 14
yi 12.4 5.3 3.2 4.5 7.1 8.6 11.6

using the central difference at the interior nodes, the forward difference
at the first node and the backward difference at the last node.
Use the MATLAB to solve the problem.



Worksheets for Numerical methods

87 – Numerical differentiation, the first derivative Řy

Example

Approximate the derivative of the function
f (x) = sin

(
x2
)

on the interval [0, 2] using the central difference with the step 0.25.

At first we define nodes xi with the given step 0.25: x1 = 0, x2 = 0.25, x3 = 0.5, . . . , x8 = 1.75, x9 = 2.
Then we calculate the approximate value of the derivative f ′(x2)

f ′(x2) =
f (x3)− f (x1)

x3 − x1
=

sin
(
x2

3
)
− sin

(
x2

1
)

x3 − x1
=

sin
(
0.52)− sin

(
02)

0.5− 0
= 0.4948 ,

approximate value of the derivative f ′(x3)

f ′(x3) =
f (x4)− f (x2)

x4 − x2
=

sin
(
x2

4
)
− sin

(
x2

2
)

x4 − x2
=

sin
(
0.752)− sin

(
0.252)

0.75− 0.25
= 0.9417

and so on.

Table of the obtained approximate values of the derivatives at the nodes:

xi 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

f ′(xi) — 0.4948 0.9417 1.1881 0.9333 -0.1268 -1.8419 -3.0698 —
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Example

Approximate the derivative of the function

f (x) = sin(x2)

on the interval [0, 2] using the central difference with the step 0.25.
Use the MATLAB to solve the problem.

We input the step as h and generate the nodes using the colon notation.

>> h=0.25
h =

0.2500
>> x=0:h:2
x =
Columns 1 through 5

0 0.2500 0.5000 0.7500 1.0000
Columns 6 through 9

1.2500 1.5000 1.7500 2.0000

We define the function f .

>> f=@(x)sin(x.ˆ2)
f =

@(x)sin(x.ˆ2)

At first we define the number n of the nodes xi. Using the cycle statement
we calculate the approximate values of the derivatives. Let us note that
the derivatives can be calculated only at the interior nodes x2, . . . , x8.

>> n=length(x)
n =

9
>> for i=2:n-1, fd(i)=(f(x(i+1))-f(x(i-1)))/(2*h); end
>> fd
fd =

Columns 1 through 5
0 0.4948 0.9417 1.1881 0.9333

Columns 6 through 8
-0.1268 -1.8419 -3.0698

Table of the obtained approximate values of the derivatives at the nodes:

xi 0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000

f ′(xi) — 0.4948 0.9417 1.1881 0.9333 -0.1268 -1.8419 -3.0698 —

Notice the fact that creating the vector fd by the cycle statements only the values
fd(2) . . . fd(8) have been inserted. However, the MATLAB has itself assigned
the value 0 to fd(1) because the component fd(1) could not be left empty.
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Exercise

Approximate the derivative of the function

f (x) = ex

on the interval [0, 3] using the central difference with the step 0.5.
Use the MATLAB to solve the problem.
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Given distinct nodes xi and corresponding function values f (xi) of a func-
tion f , values of the second derivative f ′′(xi) at the given nodes can be
approximated by the formula:

f ′′(xi) ≈
f (xi+1)− 2 f (xi) + f (xi−1)

(xi+1 − xi)(xi − xi−1)
.

f (x)

xi−1 xi xi+1

If the nodes are equidistant with the step h then the formula above can be
simplified to the form:

f ′′(xi) ≈
f (xi+1)− 2 f (xi) + f (xi−1)

h2 .
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Example

Approximate the second derivative of the data

i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

We calculate the approximate value of the second derivative y′′(x2)

y′′(x2) =
y3 − 2y2 + y1

(x3 − x2)(x2 − x1)
=

20− 2 · 50 + 40
(2− 1)(1− 0)

= −40 ,

approximate value of the second derivative y′′(x3)

y′′(x3) =
y4 − 2y3 + y2

(x4 − x3)(x3 − x2)
=

25− 2 · 20 + 50
(3− 2)(2− 1)

= 35 ,

approximate value of the second derivative y′′(x4)

y′′(x4) =
y5 − 2y4 + y3

(x5 − x4)(x4 − x3)
=

30− 2 · 25 + 20
(4− 3)(3− 2)

= 0.

Table of the obtained approximate values of the second derivatives at the
nodes:

xi 0 1 2 3 4

y′′(xi) — -40 35 0 —



Worksheets for Numerical methods

92 – Numerical differentiation, the second derivative Řy

Example

Approximate the second derivative of the data
i=1 i=2 i=3 i=4 i=5

xi 0 1 2 3 4
yi 40 50 20 25 30

Use the MATLAB to solve the problem.

We input the nodes x and the function values y.

>> x=[0 1 2 3 4]
x =

0 1 2 3 4
>> h=

1
>> y=[40 50 20 25 30]
y =

40 50 20 25 30

We define the number n of the nodes xi. Using the cycle statement we calculate the approximate values of the derivatives in accordance with the given
formula. Let us mention that the derivatives can be calculated only at the interior nodes x2, x3, x4.

>> n=length(x)
n =

5
>> for i=2:n-1, ydd(i)=(f(x(i+1))-2*f(x(i))+f(x(i-1)))/(hˆ2); end
ydd =

0 -40 35 0

Table of the obtained approximate values of the second derivatives at the nodes:

xi 0 1 2 3 4

y′′(xi) — -40 35 0 —

Notice also the fact that creating the vector ydd by the cycle statements only the values ydd(2), ydd(3), ydd(4) have been inserted. However, the
MATLAB has itself assigned the value 0 to ydd(1) because the component ydd(1) could not be left empty.



Worksheets for Numerical methods

93 – Numerical differentiation, the second derivative Řy

Exercise

Approximate the second derivative of the data

xi 2 4 6 8 10 12 14
yi 12.4 5.3 3.2 4.5 7.1 8.6 11.6
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Exercise

Approximate the second derivative of the data

xi 2 4 6 8 10 12 14
yi 12.4 5.3 3.2 4.5 7.1 8.6 11.6

Use the MATLAB to solve the problem.
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Example

Approximate the second derivative of the function
f (x) = sin

(
x2
)

on the interval [0, 2] with the step 0.25.

At first we define nodes xi with the given step h = 0.25: x1 = 0, x2 = 0.25, x3 = 0.5, . . . , x8 = 1.75, x9 = 2.
Then we calculate the approximate value of the second derivative f ′′(x2)

f ′′(x2) =
f (x3)− 2 f (x2) + f (x1)

h2 =
sin
(
x2

3
)
− 2 sin

(
x2

2
)
+ sin

(
x2

1
)

0.252 =
sin
(
0.52)− 2 sin

(
0.252)+ sin

(
02)

0.252 = 1.9598 ,

approximate value of the derivative f ′′(x3)

f ′′(x3) =
f (x4)− 2 f (x3) + f (x2)

h2 =
sin
(
x2

4
)
− 2 sin

(
x2

3
)
+ sin

(
x2

2
)

0.252 =
sin
(
0.752)− 2 sin

(
0.52)+ sin

(
0.252)

0.252 = 1.6153

and so on.

Table of the obtained approximate values of the second derivatives at the nodes:

xi 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

f ′′(xi) — 1.9598 1.6153 0.3563 -2.3948 -6.0862 -7.6347 -2.1880 —
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Example

Approximate the second derivative of the function
f (x) = sin

(
x2
)

on the interval [0, 2] with the step 0.25. Use the MATLAB to solve the problem.

We input the step h = 0.25, generate the nodes using the colon notation and define the function f .

>> h=0.25
h =

0.2500
>> x=0:h:2
x =

0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000
>> f=@(x)sin(x.ˆ2)
f =

@(x)sin(x.ˆ2)

At first we calculate the number n of the nodes xi. Using the cycle statement we calculate the approximate values of the second derivatives.

>> n=length(x)
n =

9
>> for i=2:n-1, fdd(i)=(f(x(i+1))-2*f(x(i))+f(x(i-1)))/(hˆ2); end
>> fdd
fdd =

0 1.9598 1.6153 0.3563 -2.3948 -6.0862 -7.6347 -2.1880

Table of the obtained approximate values of the second derivatives at the nodes:

xi 0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000

f ′′(xi) — 1.9598 1.6153 0.3563 -2.3948 -6.0862 -7.6347 -2.1880 —

Notice also the fact that creating the vector fdd by the cycle statements only the values fdd(2) . . . fdd(8) have been inserted. However, the MATLAB
has itself assigned the value 0 to fdd(1).
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Exercise

Approximate the second derivative of the function

f (x) = ex

on the interval [0, 3] with the step 0.5.
Use the MATLAB to solve the problem.
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Exercise

Approximate the first and the second derivative of the given data.
Use the MATLAB to solve the problem.

1.

xi 5.5 6 6.5 7 7.5

yi -37 44 20.1 34.7 -29.1

2.

xi 0 0.5 1 1.5 2

yi 36.7 -12.8 -42.7 -30.1 -45.1

3.

xi -3 -2.5 -2 -1.5 -1

yi 32.3 -45.4 9.7 44.9 -21.2

4.

xi -6.5 -6 -5.5 -5 -4.5

yi -23.6 49.9 -28.9 -0.2 -21

5.

xi 1 1.5 2 2.5 3

yi 27 -18.7 13.8 48.6 0.2

6.

xi -4.5 -4 -3.5 -3 -2.5

yi -48.6 -21.2 31.6 48.5 -48.3

7.

xi -3 -2.5 -2 -1.5 -1

yi 25.3 15.9 -28.6 10.2 10.4

8.

xi 1 1.5 2 2.5 3

yi 18.5 17.7 37.6 -48.8 -19

9.

xi -6.5 -6 -5.5 -5 -4.5

yi -48.9 -27.3 1.6 -4.2 20.3
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10.

xi -6 -5.5 -5 -4.5 -4

yi 2.1 39.5 44.2 -16.5 -6.3

11.

xi 5.5 6 6.5 7 7.5

yi -34.4 -37.8 26.2 22.1 15.1

12.

xi -4 -3.5 -3 -2.5 -2

yi -46.5 -41.9 35 -16 -3.4

13.

xi 0 0.5 1 1.5 2

yi 49.2 -12.7 3.1 -31.9 0.1

14.

xi -3.5 -3 -2.5 -2 -1.5

yi 6.5 46.9 -47.7 37 -47.4

15.

xi 0 0.5 1 1.5 2

yi 10.8 -32.5 -49.8 29 1.3

16.

xi -2 -1.5 -1 -0.5 0

yi -14.2 -21.5 36.8 12.6 -25.9

17.

xi -5 -4.5 -4 -3.5 -3

yi -47.8 -23.8 -38.4 -43.1 35.2

18.

xi -3.5 -3 -2.5 -2 -1.5

yi -48.8 38.9 36.6 -24.6 6.9

19.

xi 0.5 1 1.5 2 2.5

yi 48 29.1 -34.8 33.3 -30.9
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We calculate the value of the definite integral∫ b

a
f (x)dx.

f (x)

a b

I

The rectangle rule

We approximate the function f by the constant interpolating polynomial
p0(x) with the node x0 = a+b

2 .

f (x)

p0(x)

a ba+b
2

Irect

f
(

a+b
2

)

This approximation can be integrated analytically∫ b

a
f (x)dx ≈

∫ b

a
p0(x)dx =

∫ b

a
f
(

a + b
2

)
dx = f

(
a + b

2

) ∫ b

a
1 dx

= f
(

a + b
2

)
[x]ba = (b− a) f

(
a + b

2

)
and we obtain the rectangle rule:

Irect = (b− a) f
(

a + b
2

)
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Example

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the rectangle rule.

We have a = 0, b = 6 and f (x) =
x

1 + x2 .

The rectangle rule.

Irect = (b− a) f
(

a + b
2

)
= (6− 0) f (3) = (6− 0)

3
1 + 32

=
18
10

= 1.8

Example

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the rectangle rule.
Use the MATLAB to solve the problem.

We define the function f and input the limits of integration as the vari-
ables a, b.

>> f=@(x)x./(1+x.ˆ2)
f =
function_handle with value:

@(x)x./(1+x.ˆ2)
>> a=0
a =

0
>> b=6
b =

6

We calculate the approximate value of the given integral and input it as
the variable I.

>> I=(b-a)*f((a+b)/2)
I =

1.8000

The calculated approximate value of the given integral is 1.8.
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Exercise

Evaluate the definite integral∫ 3

1

2x

x2 + x + 3
dx

using the rectangle rule.
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Exercise

Evaluate the definite integral∫ 3

1

2x

x2 + x + 3
dx

using the rectangle rule.
Use the MATLAB to solve the problem.
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The trapezoidal rule

We approximate the function f by the linear interpolating polynomial
p1(x) with the nodes x0 = a, x1 = b.

f (x)

p1(x)

a b

Itrap

The linear approximation can be also integrated analytically∫ b

a
f (x)dx ≈

∫ b

a
p1(x)dx =

∫ b

a

(
x− b
a− b

f (a) +
x− a
b− a

f (b)
)

dx

=
∫ b

a

(
f (b)− f (a)

b− a
x +

b · f (a)− a · f (b)
b− a

)
dx

=
f (b)− f (a)

b− a

∫ b

a
x dx +

b · f (a)− a · f (b)
b− a

∫ b

a
1 dx

=
f (b)− f (a)

b− a

[
x2

2

]b

a
+

b · f (a)− a · f (b)
b− a

[x]ba

=
f (b)− f (a)

2(b− a)

(
b2 − a2

)
+

b · f (a)− a · f (b)
b− a

(b− a)

=
f (b)− f (a)

2
(b + a) + b · f (a)− a · f (b)

=
b− a

2
( f (a) + f (b)) .

And we obtain the trapezoidal rule:

Itrap =
b− a

2
( f (a) + f (b)) .
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Example

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the trapezoidal rule.

We have a = 0, b = 6 and f (x) =
x

1 + x2 .

The trapezoidal rule.

Itrap =
b− a

2
( f (a) + f (b)) =

6− 0
2

( f (0) + f (6))

= 3
(

0
1 + 02 +

6
1 + 62

)
=

18
37

= 0.4865

Example

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the trapezoidal rule.
Use the MATLAB to solve the problem.

We define the function f and input the limits of integration as the vari-
ables a, b.

>> f=@(x)x./(1+x.ˆ2)
f =
function_handle with value:

@(x)x./(1+x.ˆ2)
>> a=0
a =

0
>> b=6
b =

6

We calculate the approximate value of the given integral and input it as
the variable I.

>> I=(b-a)/2*(f(a)+f(b))
I =

0.4865

The calculated approximate value of the given integral is 0.4865.
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Exercise

Evaluate the definite integral∫ 3

1

2x

x2 + x + 3
dx

using the trapezoidal rule.
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Exercise

Evaluate the definite integral∫ 3

1

2x

x2 + x + 3
dx

using the trapezoidal rule.
Use the MATLAB to solve the problem.
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The Simpson’s rule

We approximate the function f by the quadratic interpolating polynomial
p2(x) with the nodes x0 = a, x1 = a+b

2 , x2 = b.

f (x)

p2(x)

a ba+b
2

ISimps

The quadratic approximation can be also integrated analytically and we
obtain

ISimps =
b− a

6

(
f (a) + 4 f

(
a + b

2

)
+ f (b)

)
.
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Example

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the Simpson’s rule.

We have a = 0, b = 6 and f (x) =
x

1 + x2 .

The Simpson’s rule.

ISimps =
b− a

6

(
f (a) + 4 f

(
a+b

2

)
+ f (b)

)
=

6− 0
6

( f (0) + 4 f (3) + f (6))

= 1
(

0
1 + 02 + 4

3
1 + 32 +

6
1 + 62

)
= 0 +

12
10

+
6

37
= 1.3622

Example

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the Simpson’s rule.
Use the MATLAB to solve the problem.

We define the function f and input the limits of integration as the vari-
ables a, b.

>> f=@(x)x./(1+x.ˆ2)
f =
function_handle with value:

@(x)x./(1+x.ˆ2)
>> a=0
a =

0
>> b=6
b =

6

We calculate the approximate value of the given integral and input it as
the variable I.

>> I=(b-a)/6*(f(a)+4*f((a+b)/2)+f(b))
I =

1.3622

The calculated approximate value of the given integral is 1.3622.



Worksheets for Numerical methods

111 – Numerical integration, Simpson’s rule Řy

Exercise

Evaluate the definite integral∫ 3

1

2x

x2 + x + 3
dx

using the Simpson’s rule.
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Exercise

Evaluate the definite integral∫ 3

1

2x

x2 + x + 3
dx

using the Simpson’s rule.
Use the MATLAB to solve the problem.
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Theorem

(i) Let the second derivative of the function f be continuous on the in-
terval [a, b]. Then it holds:

I − Irect =
f ′′(ξ)

24
(b− a)3,

I − Itrap = − f ′′(ξ)
12

(b− a)3.

(ii) Let the derivative of order 4 of the function f be continuous on the
interval [a, b]. Then it holds:

I − ISimps = − f (4)(ξ)
90

(b− a)5.

In all cases ξ lies within the interval (a, b).
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The composite rectangle rule

If we want to integrate the function f over the interval [a, b] using the com-
posite rectangle rule, we have to divide the given interval into n equidis-
tant subintervals of the length h = (b− a)/n with the nodes
xi = a + ih, i = 0, 1, . . . , n.

f (x)

a= x0 x1 x2 x3 b = x4x0+x1
2

x1+x2
2

x2+x3
2

x3+x4
2

ICR

n = 4, h = b−a
n

The formula of the composite rectangle rule with the step h is then of the
form

ICR = h
n

∑
i=1

f
(

xi−1+xi
2

)
.

Example

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite rectangle rule for n = 4.

We equate n = 4, so that the step is h = b−a
n = 0.5 and we obtain the nodes

x0 = −1, x1 = −0.5, x2 = 0, x3 = 0.5 a x4 = 1.

ICR = h
n

∑
i=1

f
(

xi−1+xi
2

)
= h

(
f ( x0+x1

2 ) + f ( x1+x2
2 ) + f ( x2+x3

2 ) + f ( x3+x4
2 )

)
= 0.5(e−0.75 + e−0.25 + e0.25 + e0.75)

.
= 2.3261.
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Example

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite rectangle rule for n = 4.

Use the MATLAB to solve the problem.

At first we define the function f and input the limits of integration as the
variables a, b.

>> f = @(x)exp(x)
f =
function_handle with value:

@(x)exp(x)
>> a = -1
a =

-1
>> b = 1
b =

1

Then we define n = 4 and calculate the step h.

>> n = 4
n =

4
>> h = (b-a)/n
h =

0.5000

We input the vector of the midpoints between the nodes as the variable
xmid.

>> xmid = a+h/2:h:b-h/2
x =

-0.7500 -0.2500 0.2500 0.7500
>> y = f(xmid)
y =

0.4724 0.7788 1.2840 2.1170

We calculate the approximate value of the given integral and input it as
the variable I.

>> I=h*sum(y)
I =

2.3261

The calculated approximate value of the given integral is 2.3261.
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The composite trapezoidal rule

If we want to integrate the function f over the interval [a, b] using the
composite trapezoidal rule, we have to divide the given interval into n
equidistant subintervals of the length h = (b− a)/n with the nodes xi =
a + ih, i = 0, 1, . . . , n.

f (x)

a = x0 x1 x2 x3 b = x4

h h h h

n = 4, h = b−a
n

ICT

The formula of the composite trapezoidal rule with the step h is then of
the form

ICT =
h
2

(
f (x0) + 2

n−1

∑
i=1

f (xi) + f (xn)

)
.

Example

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite trapezoidal rule for n = 4.

We equate n = 4, so that the step is h = b−a
n = 0.5 and we obtain the nodes

x0 = −1, x1 = −0.5, x2 = 0, x3 = 0.5 a x4 = 1.

ICT =
h
2

(
f (x0) + 2

n−1

∑
i=1

f (xi) + f (xn)

)
= h

2 ( f (x0) + 2 ( f (x1) + f (x2) + f (x3)) + f (xn))

=
0.5
2
(e−1 + 2(e−0.5 + e0 + e0.5) + e1)

.
= 2.3992.
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Example

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite trapezoidal rule for n = 4.

Use the MATLAB to solve the problem.

At first we define the function f and input the limits of integration as the
variables a, b.

>> f = @(x)exp(x)
f =
function_handle with value:

@(x)exp(x)
>> a = -1
a =

-1
>> b = 1
b =

1

Then we define n = 4 and calculate the step h.

>> n = 4
n =

4
>> h = (b-a)/n
h =

0.5000

We input the vector of the nodes as the variable x.

>> x = a:h:b
x =

-1.0000 -0.5000 0 0.5000 1.0000
>> y = f(x)
y =

0.3679 0.6065 1.0000 1.6487 2.7183

We calculate the approximate value of the given integral and input it as
the variable I.

>> I=h/2*(y(1)+2*sum(y(2:n))+y(n+1))
I =

2.3992

The calculated approximate value of the given integral is 2.3992.
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Exercise

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the composite trapezoidal rule for n = 4 and for n = 8. Compare
the results.
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Exercise

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the composite trapezoidal rule for n = 4 and for n = 8. Compare
the results.
Use the MATLAB to solve the problem.
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The composite Simpson’s rule

If we want to integrate the function f over the interval [a, b] using the com-
posite Simpson’s rule, we have to divide the given interval into n equidis-
tant subintervals where n has to be an even number. The length of each
subinterval is h = (b− a)/n and we obtain an odd number of the nodes
xi = a + ih, i = 0, 1, . . . , n.

f (x)

a= x0 x1 x2 x3 b = x4

ICS

n = 4, h = b−a
n

The formula of the composite Simpson’s rule with the step h is then of the
form

ICS =
h
3

 f (x0) + 4
n−1

∑
i = 1
i even

f (xi) + 2
n−2

∑
i = 2
i odd

f (xi) + f (xn)

 .

Example

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite Simpson’s rule for n = 4.

We euate n = 4, so that the step is h = b−a
n = 0.5 and we obtain the nodes

x0 = −1, x1 = −0.5, x2 = 0, x3 = 0.5 a x4 = 1.

ICS =
h
3

(
f (x0) + 4

n/2

∑
i=1

f (x2i−1) + 2
n/2−1

∑
i=1

f (x2i) + f (x2m)

)
= h

3 ( f (x0) + 4 ( f (x1) + f (x3)) + 2 f (x2) + f (x4))

= 0.5
3 (e−1 + 4(e−0.5 + e0.5) + 2e0 + e1)

.
= 2.3512.
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Example

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite Simpson’s rule for n = 4.

Use the MATLAB to solve the problem.

At first we define the function f and input the limits of integration as the
variables a, b.

>> f = @(x)exp(x)
f =
function_handle with value:

@(x)exp(x)
>> a = -1
a =

-1
>> b = 1
b =

1

Then we define n = 8 and calculate the step h.

>> n = 4
n =

4
>> h = (b-a)/n
h =

0.5000

We input the vector of the nodes as the variable x.

>> x = a:h:b
x =

-1.0000 -0.5000 0 0.5000 1.0000
>> y = f(x)
y =

0.3679 0.6065 1.0000 1.6487 2.7183

We calculate the approximate value of the given integral and input it as
the variable I.

>> I=h/3*(y(1)+4*sum(y(2:2:n))+2*sum(y(3:2:n-1))+y(n+1))
I =

2.3512

The calculated approximate value of the given integral is 2.3512.
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Example

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite Simpson’s rule for n = 8.

We equate n = 8, so that the step is h = b−a
n = 0.25 and we obtain the nodes x0 = −1, x1 = −0.75, x2 = −0.5, x3 = −0.25, x4 = 0, x5 = 0.25, x6 = 0.5,

x7 = 0.75 a x8 = 1.

ICS =
h
3

(
f (x0) + 4

n/2

∑
i=1

f (x2i−1) + 2
n/2−1

∑
i=1

f (x2i) + f (x2m)

)

=
h
3
( f (x0) + 4 ( f (x1) + f (x3) + f (x5) + f (x7)) + 2 ( f (x2) + f (x4) + f (x6)) + f (x8))

=
0.25

3
(e−1 + 4(e−0.75 + e−0.25 + e0.25 + e0.75) + 2

(
e−0.5 + e0 + e0.5

)
+ e1)

.
= 2.3505.

We use the MATLAB to solve the problem.

>> f = @(x)exp(x);
>> a = -1;
>> b = 1;
>> n = 8;
>> h = (b-a)/n
h =

0.2500
>> x = a:h:b
x =

-1.0000 -0.7500 -0.5000 -0.2500 0 0.2500 0.5000 0.7500 1.0000
>> y = f(x)
y =

0.3679 0.4724 0.6065 0.7788 1.0000 1.2840 1.6487 2.1170 2.7183
>> I=h/3*(y(1)+4*sum(y(2:2:n))+2*sum(y(3:2:n-1))+y(n+1))
I =

2.3505
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Exercise

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the composite Simpson’s rule for n = 4 and for n = 8.
Compare the results.
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Exercise

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the composite Simpson’s rule for n = 4 and for n = 8.
Compare the results.
Use the MATLAB to solve the problem.
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Theorem

(i) Let the second derivative of the function f be continuous on the in-
terval [a, b]. The composite rectangle rule and the composite trapezoidal
rule have degree of exactness equal to 2, i.e. it holds:

|I − ICR| ≤ C1h2,
|I − ICT| ≤ C2h2.

(ii) Let the derivative of order 4 of the function f be continuous on the
interval [a, b]. The composite Simpson’s rule has degree of exactness
equal to 4, i.e. it holds:

|I − ICS| ≤ C3h4.

C1, C2 and C3 are some non-negative constants that are independent on
the step h.
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The evaluation of the integral with the given accuracy

We calculate the approximate value Ih of the integral using the integration formula with the step h. Consequently, we calculate the approximate value Ih/2
with the half-length step h/2. We stop the calculation, if the following holds

|Ih − Ih/2| ≤ ε.

The composite trapezoidal rules for n = 1, 2, 4

f (x)

a = x0 b = x1

n = 1

h

f (x)

a = x0 x1 x2 x3 b = x4

h h

n = 2
f (x)

a = x0 x1 x2 x3 b = x4

h h h h

n = 4

The composite Simpson’s rules for n = 2, 4, 8

f (x)

a = x0 x1

h h
b = x2

n = 2
f (x)

a = x0 x1 x2 x3 b = x4

h h h h

n = 4
f (x)

a = x0 x2 x4 x6

h h h h h h h h

b = x8
x1 x3 x5 x7

n = 8
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Example

Evaluate the definite integral ∫ 1

−1
ex dx

using the composite trapezoidal formula with the given accuracy
ε = 10−4.
Use the MATLAB to solve the problem.

We define the function f and input the limits of integration as the vari-
ables a, b.

>> f = @(x)exp(x);
>> a = -1;
>> b = 1;

We define n = 2 in the first step. We input the vector of the nodes as the
variable x.

>> n = 2;
>> h = (b-a)/n;
>> x = a:h:b;
>> y = f(x);

We calculate the approximate value of the given integral and input it as
the variable Inew.

>> Inew = h/2*(y(1)+2*sum(y(2:n))+y(n+1))
Inew =

2.5431

We save the obtained value as the variable I. Then we double the value of
n and repeat all the calculation. Finally we evaluate the error approxima-
tion |Ih − I2h|

>> I = Inew;
>> n = 2*n
n =

4
>> h = (b-a)/n;
>> x = a:h:b;
>> y = f(x);
>> Inew = h/2*(y(1)+2*sum(y(2:n))+y(n+1))
Inew =

2.3992
>> Error = abs(Inew-I)
Error =

0.1439

We repeat the previous seven statements till the error is greater than 10−4.

We round the result to four decimal places and write it as∫ 1

−1
ex dx = 2.3504± 10−4.

n Ih |Ih − I2h|
2 2.5430806 —
4 2.3991662 0.1439143
8 2.3626313 0.0365349

16 2.3534620 0.0091693
32 2.3511674 0.0022945
64 2.3505936 0.0005737

128 2.3504502 0.0001434
256 2.3504143 0.0000358

ε = 10−4 = 0.0001

> 10−4

> 10−4

> 10−4

> 10−4

> 10−4

> 10−4

≤ 10−4
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Exercise

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the composite trapezoidal formula with the given accuracy
ε = 10−4.
Use the MATLAB to solve the problem.
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Example

Evaluate the definite integral ∫ e

1

ln x√
9− x2

dx

using the composite Simpson’s formula with the given accuracy ε = 10−8.
Use the MATLAB to solve the problem.

We define the function f and input the limits of integration as the variables a, b.

>> f = @(x)log(x)./sqrt(9-x.ˆ2);
>> a = 1;
>> b = exp(1);

We set n = 2 in the first step. We input the vector of the nodes as the variable x.

>> n = 2;
>> h = (b-a)/n;
>> x = a:h:b;
>> y = f(x);

Because we aim at the accuracy 10−8, we can not take up with the four decimal places that the MATLAB display in the standard short format. We have to
switch the output format to long.

>> format long

We calculate the approximate value of the given integral and input it as the variable Inew.

>> Inew = h/3*(y(1)+4*sum(y(2:2:n))+2*sum(y(3:2:n-1))+y(n+1))
Inew =

0.52733592
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We save the obtained value as the variable I. Then we double the value of n and repeat all calculations. Finally we evaluate the error approximation
|Ih − I2h|

>> I = Inew;
>> n = 2*n
n =

4
>> h = (b-a)/n;
>> x = a:h:b;
>> y = f(x);
>> Inew = h/3*(y(1)+4*sum(y(2:2:n))+2*sum(y(3:2:n-1))+y(n+1))
Inew =

0.51036199
>> Error = abs(Inew-I)
Error =

0.01697393

We repeat the previous seven statements till the error is greater than 10−8.
We round the result to eight decimal places and write it as∫ e

1

ln x√
9− x2

dx = 0.50661191± 10−8.

n Ih |Ih − I2h|
2 0.52733592 —
4 0.51036199 0.01697393
8 0.50708297 0.00327902

16 0.50665442 0.00042855
32 0.50661499 0.00003943
64 0.50661211 0.00000288

128 0.50661192 0.00000019
256 0.50661191 0.00000001
512 0.50661191 0.00000000

ε = 10−8 = 0.000000001

> 10−8

> 10−8

> 10−8

> 10−8

> 10−8

> 10−8

> 10−8

≤ 10−8
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Exercise

Evaluate the definite integral∫ 6

0

x
1 + x2 dx

using the composite Simpson’s formula with the given accuracy
ε = 10−8.
Use the MATLAB to solve the problem.
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Exercise

Evaluate the definite integral using the composite Simpson’s formula
with the given accuracy ε = 10−8.
Use the MATLAB to solve the problem.

1. ∫ 1

0
x2
√

1 + x2 dx

2. ∫ 2

1

ln(1 + x)
1 + cos x

dx

3. ∫ 1

0
x2 cos

(
(x2
)

dx

4. ∫ 1

0

1√
1 + 4x− x4

dx

5. ∫ 2

0
x2e−x2

dx

6. ∫ 2

1

cos2(4x)
x

dx

7. ∫ 1

0

√
1 + x2

1 + cos x
dx

8. ∫ 2

1

ln(1 + x2)

1 + x2 dx

9. ∫ 2

0.5

√
1 + x4 dx

10. ∫ 2

1

sin2(3x)
x2 dx

11. ∫ 1

0
x3
√

1 + x3 dx

12. ∫ 3

1

cos2 x
x2 dx

13. ∫ 2

1
x3e−x3

dx

14. ∫ 2

1

ex

x2 dx

15. ∫ 1

0

x√
1 + x4

dx

16. ∫ 1

0

x2

1 + sin x
dx

17. ∫ 0.8

0

x3 + x
cos2 x

dx
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18. ∫ 2

1

√
1 + x4

x4 dx

19. ∫ 2

1

1
x2 sin2 x

dx

20. ∫ 1

0

√
1− x3

1 + x3 dx

21. ∫ 2

1
e−x2+2x+1 dx

22. ∫ 1

0
cos

(
x2

2

)
dx

23. ∫ 1

0

√
x cos x dx

24. ∫ 2.1

0.5

ln(1 + x)
1 + cos x

dx

25. ∫ −4.2

−2.2

3− 2x√
3x2 − 2x− 1

dx

26. ∫ 0.9

0.3

ln
(
1 +
√

x
)

√
x

dx
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Numerical solution of ordinary differential equations
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The initial-value problem for the ordinary differential equation
We find the continuous function y = y(x) that on the interval [a, b] fulfil
the differential equation

y′(x) = f (x, y(x))

and the initial condition
y(a) = c.

This continuous function is the analytical solution of the initial-value
problem.

x

y

y(x)

c

ba

To solve the problem numerically we divide the interval [a, b] into n
equidistant subintervals of the length h = (b − a)/n with the nodes
x0 = a, x1, x2, . . . , xn = b ,
i.e.

xi = a + ih, i = 0, 1, . . . , n.

a = x0 x1 x2 x3 b = x4

h h h h

To these nodes we assign values y0 = c, y1, y2, . . . , yn that approximate
values of the analytical solution y(x0), y(x1), y(x2), . . . , y(xn).
Thus the numerical solution of the initial-value problem is a set of n + 1
discrete points [xi; yi] , i = 0, 1, . . . , n.

x

y

c = y0

y1

y2

y3

b = x3x2x1a = x0
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Euler method

At first we calculate the nodes

xi = a + ih, i = 0, 1, . . . , n.

We consider the differential equation

y′(x) = f (x, y(x)),

in a node xi and we replace the accurate value of the solution y(xi) by its
approximation yi.

Next we approximate the derivative on the left side using the numerical
formula

y′(xi) = f (xi, y(xi)) ≈ yi+1 − yi

h
= f (xi, yi).

If the values xi, yi are known, we can calculate an unknown value yi+1

yi+1 − yi

h
= f (xi, yi)

yi+1 − yi = h · f (xi, yi)

yi+1 = yi + h · f (xi, yi)

The initial value y0 is given by the initial condition and the other values
yi+1 we can calculate by the derived formula.

y0 = c
for i = 0, . . . , n− 1

yi+1 = yi + h f (xi, yi),

The Euler method is the method of the first order – the global error is
bounded by the product of the step size h and a constant C > 0 indepen-
dent on h:

|yi − y(xi)| ≤ Ch , ∀i = 0, 1, . . . , n.
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Example

Solve the initial-value problem

y′ = x2 − 0.2y, y(−2) = −1

on the interval [−2, 3] using the Euler method with the step h = 1.

At first we specify the number n of subintervals into which we divide the
given interval [a, b]

n =
b− a

h
=

3− (−2)
1

= 5.

Then we calculate the nodes:

x0 = a = −2
x1 = a + h = −2 + 1 = −1
x2 = a + 2h = −2 + 2 = 0
x3 = a + 3h = 1
x4 = a + 4h = 2
x5 = a + 5h = 3

The value y0 = −1 is given by the initial condition, other values yi for
i = 1, . . . , 5 can be calculated by the formula yi+1 = yi + h f (xi, yi).

There it holds f (x, y) = x2− 0.2y and h = 1, so the computational formula
is of the form:

yi+1 = yi + x2
i − 0.2yi

y0 = −1 (given initial value)

y1 = y0 + h f (x0, y0) = y0 + x2
0 − 0.2y0 = −1 + (−2)2 − 0.2 · (−1) = 3.2

y2 = y1 + h f (x1, y1) = y1 + x2
1 − 0.2y1 = 3.2 + (−1)2 − 0.2 · 3.2 = 3.56

y3 = y1 + h f (x2, y2) = y2 + x2
2 − 0.2y2 = 2.848

y4 = y1 + h f (x3, y3) = y3 + x2
3 − 0.2y3 = 3.2784

y5 = y1 + h f (x4, y4) = y4 + x2
4 − 0.2y4 = 6.6227

In the end we write the calculated values of the obtained numerical solu-
tion of the initial-value problem to a table

xi −2 −1 0 1 2 3
yi −1 3.2 3.56 2.848 3.2784 6.6227

and plot the graph of this numerical solution:

x

y

x0 = a x1 x2 x3 x4 x5 = b
y0 = c

y1

y2

y3

y4

y5
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Example

Solve the initial-value problem

y′ = x2 − 0.2y, y(−2) = −1

on the interval [−2, 3] using the Euler method with the step h = 1.
Use the MATLAB to solve the problem.

We input both end-points of the interval [a, b] as well as the value c of the
initial condition and we define the function f from the right side of the
differential equation.

>> a=-2
a =

-2
>> b=3
b =

3
>> c=-1
c =

-1
>> f=@(x,y)(x.ˆ2-0.2*y)
f =

@(x,y)(x.ˆ2-0.2*y)

Then we input the step size h and calculate the number of subintervals
n = b−a

h = 3−(−2)
1 = 5.

>> h=1
h =

1
>> n=(b-a)/h
n =

5

Using the colon notation we generate the nodes xi.

>> x=a:h:b
x =

-2 -1 0 1 2 3

We input the value y0 and calculate other values y.

>> y(1)=c
y =

-1
>> for i=1:n, y(i+1)=y(i)+h*f(x(i),y(i)); end
>> y
y =

-1.0000 3.2000 3.5600 2.8480 3.2784 6.6227

Let us note that the indexing in MATLAB goes from 1, i.e. the values
y0, y1, . . . , yn are input as the variables y(1), y(2), . . ., y(n+1).
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We write the numerical solution values to a table and plot the solution
graph.

>> [x;y]
ans =

-2.0000 -1.0000 0 1.0000 2.0000 3.0000
-1.0000 3.2000 3.5600 2.8480 3.2784 6.6227

>> plot(x,y,’b.-’)

The resulting numerical solution of the given initial-value problem is:

xi −2 −1 0 1 2 3
yi −1 3.2 3.56 2.848 3.2784 6.6227

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

0

1

2

3

4

5

6

7
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Exercise

Solve the initial-value problem

y′ =
3y− 2x

x + y
, y(3) = 2

on the interval [3, 6] using the Euler method with the step h = 0.5.
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Exercise

Solve the initial-value problem

y′ =
3y− 2x

x + y
, y(3) = 2

on the interval [3, 6] using the Euler method with the step h = 0.5.
Use the MATLAB to solve the problem.
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Example

Solve the initial-value problem

y′ = y− x2 + 2, y(0) = −1

on the interval [0, 2] using the Euler method with the steps h = 0.5 and
h = 0.1.
Compare obtained numerical solution with the analytical one.
Use the MATLAB to solve the problem.

We input both end-points of the interval [a, b] as well as the value c of the
initial condition and we define the function f from the right side of the
differential equation.

>> a=0
a =

0
>> b=2
b =

2
>> c=-1
c =

-1
>> f=@(x,y)(y-x.ˆ2+2)
f =

@(x,y)(y-x.ˆ2+2)

Then we input the step size h and calculate the number of subintervals
n = b−a

h .

>> h=0.5
h =

0.5000

>> n=(b-a)/h
n =

4

Using the colon notation we generate the nodes xi = a+ ih for i = 0, . . . , n.

>> x=a:h:b
x =

0 0.5000 1.0000 1.5000 2.0000

We input the value y0 and calculate other values y.

>> y(1)=c
y =

-1

>> for i=1:n, y(i+1)=y(i)+h*f(x(i),y(i)); end
>> y
y =

-1.0000 -0.5000 0.1250 0.6875 0.9063

Let us note that the indexing in MATLAB goes from 1, i.e. the values
y0, y1, . . . , yn are input as the variables y(1), y(2), . . ., y(n+1).
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We write the obtained numerical solution values to a table.

>> [x;y]
ans =

0 0.5000 1.0000 1.5000 2.0000
-1.0000 -0.5000 0.1250 0.6875 0.9063

The resulting numerical solution of the given initial-value problem is:

xi 0 0.5 1 1.5 2

yi -1 -0.5 0.125 0.6875 0.9063

We save the values of this numerical solution (calculated with the step
h = 0.5) to the variables x05 a y05 and clear the variables x, y, n, h to
prepare these for the next calculations.

x05=x; y05=y;
clear x y n h

Then we input the step size h and calculate the number of subintervals n.

>> h=0.1
h =

0.1000
>> n=(b-a)/h
n =

20

Using the colon notation we generate the nodes xi.

>> x=a:h:b;

We input the initial value y0 and calculate other values y.

>> y(1)=c
y =

-1
>> for i=1:n, y(i+1)=y(i)+h*f(x(i),y(i)); end

We write the numerical solution values to a table.

>> [x;y]
ans =

Columns 1 through 6
0 0.1000 0.2000 0.3000 0.4000 0.5000

-1.0000 -0.9000 -0.7910 -0.6741 -0.5505 -0.4216

Columns 7 through 12
0.6000 0.7000 0.8000 0.9000 1.0000 1.1000
-0.2887 -0.1536 -0.0179 0.1163 0.2469 0.3716

Columns 13 through 18
1.2000 1.3000 1.4000 1.5000 1.6000 1.7000
0.4877 0.5925 0.6828 0.7550 0.8055 0.8301

Columns 19 through 21
1.8000 1.9000 2.0000
0.8241 0.7825 0.6998
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Now we can plot graphs of numerical solutions corresponding to the step
size h = 0.5 (saved as x05, y05) and to the step size h = 0.1.

>> x01=x; y01=y;
>> plot(x05,y05,’b.-’,x01,y01,’g.--’)
>> legend(’h=0.5’,’h=0.1’)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

h=0.5
h=0.1

We compare both numerical solutions with the known analytical solution
of given initial-value problem that is y = x2 + 2x− ex.

>> plot(x05,y05,’b.-’,x01,y01,’g.--’)
>> hold on
>> fplot(@(x)x.ˆ2+2*x-exp(x),[0,2],’r’)
>> legend(’h=0.5’,’h=0.1’,’analytical solution’)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

h=0.5
h=0.1
the exact solution
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Exercise

Solve the initial-value problem

y′ = x2 − 0.2y, y(−2) = −1

on the interval [−2, 3] using the Euler method with the steps h = 1 and
h = 0.5.
Compare obtained numerical solution with the analytical one.
Use the MATLAB to solve the problem.
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Exercise

Solve the initial-value problem

y′ =
3y− 2x

x + y
, y(3) = 2

on the interval [3, 6] using the Euler method with the steps h = 0.5,
h = 0.1 and h = 0.05.
Use the MATLAB to solve the problem.
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Heun method

The equidistant nodes are the same as for the Euler method, i.e.

xi = a + ih, i = 0, 1, . . . , n.

The value y0 is also given by the initial condidion y0 = c.
The method principle is that for every i = 0, . . . , n − 1 the value yi is al-
ready known and the value yi+1 is to be found. In contrast to the Euler
method, in each step we first have to evaluate auxiliary constants k1, k2
and next we calculate the value yi+1 from these:

y0 = c
for i = 0, . . . , n− 1

k1 = h f (xi, yi)

k2 = h f (xi + h, yi + k1)

yi+1 = yi +
1
2
(k1 + k2)

The Heun method is the method of the second order – the global error is
bounded by the product of h2 and a constant C > 0 independent on h:

|yi − y(xi)| ≤ Ch2 , ∀i = 0, 1, . . . , n.
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Example

Solve the initial-value problem

y′ = x2 − 0.2y, y(−2) = −1

on the interval [−2, 3] using the Heun method with the step h = 1.

At first we calculate the number of subintervals into which we divide the
given interval [a, b]

n =
b− a

h
=

3− (−2)
1

= 5

and the nodes
x0 = a = −2
x1 = a + h = −2 + 1 = −1
x2 = a + 2h = −2 + 2 = 0
x3 = a + 3h = 1
x4 = a + 4h = 2
x5 = a + 5h = 3 .

The initial condition determine the value y0 = −1. In following steps we
first evaluate constants k1, k2 and using these we calculate the required
value yi+1.

y0 = −1 (initial condition)

Since it holds f (x, y) = x2 − 0.2y and h = 1 in this example, the calcula-
tions look like as follows:

for i = 0

k1 = h f (x0, y0) = 1 · ((−2)2 − 0.2 · (−1)) = 4.2

k2 = h f (x0 + h, y0 + k1) = 1 · ((−2 + 1)2 − 0.2 · (−1 + 4.2)) = 0.36

y1 = y0 +
1
2
(k1 + k2) = −1 +

1
2
(4.2 + 0.36) = 1.28

for i = 1

k1 = h f (x1, y1) = 1 · ((−1)2 − 0.2 · 1.28) = 0.744

k2 = h f (x1 + h, y1 + k1) = 1 · ((−1 + 1)2 − 0.2 · (1.28 + 0.744)) =
− 0.4048

y2 = y1 +
1
2
(k1 + k2) = 1.28 +

1
2
(0.744 + (−0.4048)) = 1.4496

for i = 2
k1 = h f (x2, y2) = −0.2899
k2 = h f (x2 + h, y2 + k1) = 0.7681

y3 = y2 +
1
2
(k1 + k2) = 1.6887

for i = 3
k1 = h f (x3, y3) = 0.6623
k2 = h f (x3 + h, y3 + k1) = 3.5298

y4 = y3 +
1
2
(k1 + k2) = 3.7847

for i = 4
k1 = h f (x4, y4) = 3.2431
k2 = h f (x4 + h, y4 + k1) = 7.5944

y5 = y4 +
1
2
(k1 + k2) = 9.2035
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We write the obtained numerical solution values to a table

xi −2 −1 0 1 2 3
yi −1 1.2800 1.4496 1.6887 3.7847 9.2035

and plot the graph of this numerical solution:

x

y

x0 = a x1 x2 x3 x4 x5 = b

y0 = c

y1

y2
y3

y4

y5
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Example

Solve the initial-value problem

y′ = x2 − 0.2y, y(−2) = −1

on the interval [−2, 3] using the Heun method with the step h = 1.
Use the MATLAB to solve the problem.

We input both end-points of the interval [a, b] as well as the value c of the
initial condition and we define the function f from the right side of the
differential equation.

>> a=-2
a =

-2
>> b=3
b =

3
>> c=-1
c =

-1
>> f=@(x,y)(x.ˆ2-0.2*y)
f =

@(x,y)(x.ˆ2-0.2*y)

Then we input the step size h and calculate the number of subintervals
n = b−a

h = 3−(−2)
1 = 5.

>> h=1
h =

1
>> n=(b-a)/h
n =

5

Using the colon notation we generate the nodes xi.

>> x=a:h:b
x =

-2 -1 0 1 2 3

We input the value y0 and calculate other values y.

>> y(1)=c
y =

-1
>> for i=1:n,

k1=h*f(x(i),y(i)),
k2=h*f(x(i+1),y(i)+k1),
y(i+1)=y(i)+1/2*(k1+k2),

end
k1 =

4.2000
k2 =

0.3600
y =

-1.0000 1.2800

k1 =
0.7440

k2 =
-0.4048

y =
-1.0000 1.2800 1.4496

Let us note that the indexing in MATLAB goes from 1, i.e. the values
y0, y1, . . . , yn are input as the variables y(1), y(2), . . ., y(n+1).
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k1 =
-0.2899

k2 =
0.7681

y =
-1.0000 1.2800 1.4496 1.6887

k1 =
0.6623

k2 =
3.5298

y =
-1.0000 1.2800 1.4496 1.6887 3.7847

k1 =
3.2431

k2 =
7.5944

y =
-1.0000 1.2800 1.4496 1.6887 3.7847 9.2035

We write the obtained numerical solution values to a table and plot this
solution graph.

>> [x;y]
ans =
-2.0000 -1.0000 0 1.0000 2.0000 3.0000
-1.0000 1.2800 1.4496 1.6887 3.7847 9.2035

>> plot(x,y,’b.-’)

The resulting numerical solution of the given initial-value problem is:

xi −2 −1 0 1 2 3
yi −1 1.2800 1.4496 1.6887 3.7847 9.2035
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Exercise

Solve the initial-value problem

y′ =
3y− 2x

x + y
, y(3) = 2

on the interval [3, 6] using the Heun method with the step h = 0.5.
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Exercise

Solve the initial-value problem

y′ =
3y− 2x

x + y
, y(3) = 2

on the interval [3, 6] using the Heun method with the step h = 0.5.
Use the MATLAB to solve the problem.
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Runge-Kutta method RK4

The equidistant nodes are the same as before, i.e.

xi = a + ih, i = 0, 1, . . . , n

and the value y0 is again determined by the initial condition y0 = c.
The method principle is that for every i = 0, . . . , n − 1 the value yi is
already known and the value yi+1 is to be found. Analogous to the
Heun method, in each step we first have to evaluate auxiliary constants
k1, k2, k3, k4 and next we calculate the value yi+1 from these:

y0 = c
for i = 0, . . . , n− 1

k1 = h f (xi, yi)

k2 = h f (xi +
1
2

h, yi +
1
2

k1)

k3 = h f (xi +
1
2

h, yi +
1
2

k2)

k4 = h f (xi + h, yi + k3)

yi+1 = yi +
1
6
(k1 + 2k2 + 2k3 + k4).

The Runge-Kutta method RK4 is the method of the fourth order – the
global error is bounded by the product of h4 and a constant C > 0 inde-
pendent on h:

|yi − y(xi)| ≤ Ch4 , ∀i = 0, 1, . . . , n
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Example

Solve the initial-value problem

y′ = y− x2 + 2, y(0) = −1

on the interval [0, 2] using the Runge-Kutta method RK4 with the step
h = 0.5.

We calculate the number of subintervals into which we divide the given
interval [a, b]

n =
b− a

h
=

2− 0
0.5

= 4

and the nodes
x0 = a = 0
x1 = a + h = 0 + 0.5 = 0.5
x2 = a + 2h = 0 + 1 = 1
x3 = a + 3h = 1 + 1.5 = 1.5
x4 = a + 4h = 0 + 2

The initial condition determine the value y0 = −1. In consequent steps
we first evaluate constants k1, k2, k3, k4 and using these we calculate the
required value yi+1.

y0 = −1 (initial condition)

Since it holds f (x, y) = y− x2 + 2 and h = 0.5 in this example, the calcu-
lations look like as follows:

for i = 0
k1 = h f (x0, y0) = 0.5

k2 = h f (x0 +
1
2 h, y0 +

1
2 k1) = 0.5938

k3 = h f (x0 +
1
2 h, y0 +

1
2 k2) = 0.6172

k4 = h f (x0 + h, y0 + k3) = 0.6836

y1 = y0 +
1
6
(k1 + 2k2 + 2k3 + k4) =

= −1 +
1
6
(0.5 + 2 · 0.5938 + 2 · 0.6172 + 0.6836) = −0.3991

for i = 1
k1 = h f (x1, y1) = 0.6755

k2 = h f (x1 +
1
2 h, y1 +

1
2 k1) = 0.6881

k3 = h f (x1 +
1
2 h, y1 +

1
2 k2) = 0.6912

k4 = h f (x1 + h, y1 + k3) = 0.6461

y2 = y1 +
1
6
(k1 + 2k2 + 2k3 + k4) = 0.2809
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for i = 2
k1 = h f (x2, y2) = 0.6405

k2 = h f (x2 +
1
2 h, y2 +

1
2 k1) = 0.5193

k3 = h f (x2 +
1
2 h, y2 +

1
2 k2) = 0.4890

k4 = h f (x2 + h, y2 + k3) = 0.2600

y3 = y2 +
1
6
(k1 + 2k2 + 2k3 + k4)

= 0.7671
for i = 3

k1 = h f (x2, y2) = 0.2586

k2 = h f (x3 +
1
2 h, y3 +

1
2 k1) = −0.0830

k3 = h f (x3 +
1
2 h, y3 +

1
2 k2) = −0.1684

k4 = h f (x3 + h, y3 + k3) = −0.7007

y4 = y3 +
1
6
(k1 + 2k2 + 2k3 + k4)

= 0.6096

We write the obtained numerical solution to a table

xi 0 0.5 1 1.5 2
yi −1 −0.3991 0.2809 0.7671 0.6096

and plot this solution graph:

x

y

x0 = a x1 x2 x3 x4 = b

y0 = c

y1

y2

y3
y4
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Example

Solve the initial-value problem

y′ = y− x2 + 2, y(0) = −1

on the interval [0, 2] using the Runge-Kutta method RK4 with the step
h = 0.5.
Use the MATLAB to solve the problem.

We input both end-points of the interval [a, b] as well as the value c of the
initial condition and we define the function f from the right side of the
differential equation.

>> a=0
a =

-2
>> b=2
b =

3
>> c=-1
c =

-1
>> f=@(x,y)(y-x.ˆ2+2)
f =

@(x,y)(y-x.ˆ2+2)

Then we input the step size h and calculate the number of subintervals n.

>> h=0.5
h =

0.5000
>> n=(b-a)/h
n =

4

Using the colon notation we generate the nodes xi.

>> x=a:h:b
x =

0 0.5 1 1.5 2

We input the value y0 and calculate other values y.

>> y(1)=c
y =

-1
>> for i=1:n

k1=h*f(x(i),y(i))
k2=h*f(x(i)+h/2,y(i)+1/2*k1)
k3=h*f(x(i)+h/2,y(i)+1/2*k2)
k4=h*f(x(i)+h,y(i)+k3)
y(i+1)=y(i)+1/6*(k1+2*k2+2*k3+k4)

end
k1 =

0.5000
k2 =

0.5938
k3 =

0.6172
k4 =

0.6836
y =

-1.0000 -0.3991

Let us note that the indexing in MATLAB goes from 1, i.e. the values
y0, y1, . . . , yn are input as the variables y(1), y(2), . . ., y(n+1), and that
the cycle statement includes all between for and end.
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k1 =
0.6755

k2 =
0.6881

k3 =
0.6912

k4 =
0.6461

y =
-1.0000 -0.3991 0.2809

k1 =
0.6405

k2 =
0.5193

k3 =
0.4890

k4 =
0.2600

y =
-1.0000 -0.3991 0.2809 0.7671

k1 =
0.2586

k2 =
-0.0830

k3 =
-0.1684

k4 =
-0.7007

y =
-1.0000 -0.3991 0.2809 0.7671 0.6096

We write the obtained numerical solution values to a table and plot this
solution graph.

>> [x;y]
ans =

0 0.5000 1.0000 1.5000 2.0000
-1.0000 -0.3991 0.2809 0.7671 0.6096

>> plot(x,y,’b.-’)

The resulting numerical solution of the given initial-value problem is:

xi 0 0.5 1 1.5 2
yi −1 −0.3991 0.2809 0.7671 0.6096
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Exercise

Solve the initial-value problem

y′ =
3y− 2x

x + y
, y(3) = 2

on the interval [3, 6] using the Runge-Kutta method RK4 with the step
h = 0.5.
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Exercise

Solve the initial-value problem

y′ =
3y− 2x

x + y
, y(3) = 2

on the interval [3, 6] using the Runge-Kutta method RK4 with the step
h = 0.5.
Use the MATLAB to solve the problem.
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Exercise

Solve the initial-value problem

y′ = y− x2 + 2, y(0) = −1

on the interval [0, 2] using the Runge-Kutta method RK4 with the steps
h = 0.5 and h = 0.1.
Compare obtained numerical solution with the analytical one.
Use the MATLAB to solve the problem.
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Exercise

Solve the initial-value problem

y′ = y− x2 + 2, y(0) = −1

on the interval [0, 2] using the Euler method and the Runge-Kutta
method RK4 both with the same step h = 0.5.
Compare values of both numerical solutions in a table as well as graph-
ically.
Use the MATLAB to solve the problem.
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Exercise

Solve the initial-value problem

y′ = f (x, y), y(a) = c

on the interval [a, b] using the Euler method and the Runge-Kutta
method RK4 both with the same step h = 0.5.
Compare values of both numerical solutions in a table as well as graph-
ically.
Use the MATLAB to solve the problem.

1.

f (x, y) =
y

x2 + 1
, a = 0, b = 1, c = 2

2.

f (x, y) = 3xy2 +
y
x

, a = 1, b = 2, c = −1

3.

f (x, y) =
x2 + y

x
, a = 1, b = 2, c = 0

4.

f (x, y) =
y
x
− y2, a = 1, b = 2, c = 1

5.
f (x, y) = x− xy, a = 0, b = 1, c = 3

6.

f (x, y) =
3x + y− 2

2− x
, a = 0, b = 1, c = 4

7.

f (x, y) =
√

y
x

, a = 1, b = 2, c = 4

8.

f (x, y) =
y
x
(1 + ln y− ln x), a = 1, b = 2, c = e

9.

f (x, y) =
y + 2
x + 3

, a = 0, b = 1, c = 1

10.
f (x, y) = sin2(y− x), a = 0, b = 1, c = 0

11.

f (x, y) =
xy + y

x
, a = 1, b = 2, c =

1
e

12.

f (x, y) =
1− x2

xy
, a = 1, b = 2, c = 2

13.
f (x, y) = ey − 1 + x, a = 0, b = 1, c = −2

14.

f (x, y) =
x2 + y2

xy
, a = 1, b = 2, c = 2

15.

f (x, y) = x3 +
2y
x

, a = 1, b = 2, c = 0
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16.

f (x, y) =
y2 ln x− y

x
, a = 1, b = 2, c = 1

17.

f (x, y) = x2 + 1 +
2xy

x2 + 1
, a = 0, b = 1, c = 0

18.
f (x, y) = (x + y)2, a = 0, b = 1, c = 0

19.

f (x, y) =
y

2
√

x
, a = 3, b = 4, c = 3

20.

f (x, y) =
x2 + y2

2xy
, a = 3, b = 4, c = 1

21.

f (x, y) =
y

x2 + 1
, a = 1, b = 2, c = 4

22.

f (x, y) = 3xy2 +
y
x

, a = −2, b = −1, c = 1
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