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INSTRUCTIONS FOR EDUCATION  
 

STATISTICS I 
 

 

The lecture notes are divided into fractions (chapters) that correspond to logical dividing of 
studied subject matter. Large chapters are divided into numbering subchapters. Any 
subchapter has got this structure. 

                 

   Study time 

Time that is of needed to understanding matters. The time is orientation and it can serve as 
guide for study layout. 

 

   Aim 

Then are introduced the aims which do u have achieve after work up these chapter – 
concrete knowledge and acquirements.  

 

   Explication 
Follows personal interpretation studied matters, introduction new notions, and their 

explication, everything accompanied by buckthorn examples. 
 
 

    Summary of notions 
In conclusion are rerun main notions which do you have develop yourself. If some of them 

you don't understand yet return towards them once more. 
 

     Study guide 

 

      Solved example 
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     Questions 
To be really sure that you completely understand discussed problems you got several 

theoretical questions here. Results of these tasks are mostly mentioned in brackets or they can 
be found at the end of textbook in KEYS TO SOLUTIONS. 

  

    Problems 
In the end practical tasks for solution are presented.  
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   Study time:  70 minutes 
 

1 EXPLORATORY DATA ANALYSIS  
  
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

        
 

    Aim  
• general notions of exploratory (preliminary) statistics 

• data variable types 

• statistical characteristics and methods of graphical presentation 
qualitative variables  

• statistical characteristics and methods of graphical presentation 
quantitative variables 
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  Explication 
 

Original goal of statistics was to acquire data about population based on a sampling 
population. By population we mean a group of all existing elements which we observe during 
statistical research. For example: 
 

If we perform a statistical research about 15 years old girls altitude by population we 
mean all girls currently 15. 

Considering the fact that usually a number of elements in populations is high we perform a 
research on so called sample examination where we use only part of the population instead 
of complete one. Examined part of population is called the sample. What's important is to 
define really representative selection.   

There are several ways how to make this selection. To avoid the omittance of some 
elements of population we choose so called random sample in which each element of 
population has a same chance to be selected.  

It's obvious that sample examination can't ever be as correct as exploration of all 
population. Why we do prefer it?  

 
1. Reduction of time and financial cost  (especially in large population) 

2. Destructive testing (some tests – cholesterol contended in blood etc.– lead to the 
destruction of examined elements) 

3. Inaccessibility of all population 

 

Now u know that statistics can describe all population based on knowledge gathered from 
population sample. Now we move on to exploratory data analysis (EDA). Data we observe 
will be called the variables and their values variable variants. EDA is often a first step in 
revealing information hidden in large amount variables and their variants. 

 
Considering the fact that the way of variables processing depends most of all on their type we 
now make ourselves familiar with a basic dividing of variables into different categories. This 
dividing is presented on following image. 
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• Qualitative variable – its variants are expressed verbally and it's divided into two 

general subgroups according to reference between particular values:  

� Nominal variable – has equivalent variants: it is impossible compare them nor 
sort them (for example: sex, nationality ...)     

� Ordinal variable – it forms pass between qualitative and quantitative 
variables: individual variant can be sort and it is possible compare each other  
(for example: clothing size (S, M, L, XL))  

 
Second way of dividing is dividing based on number of variants:   

 
� Alternative variable – it has only two various variants (e.g. sex - male, 

female; ...)  
 

� Plural variable – it has more than two various variants (e.g. education, name, 
eye color, ...) 

 
 
• Quantitative variable – it is expressed numerically and it's divided into: 
  

� Discrete variable – it has finite or denumerable number of variants  
 

Variable 

Qualitative 
(categorial, lexical...) 

Quantitative 
(numerical...) 

Nominal 

general dividing 

Ordinal 

dividing based on 
number of variant 

variant 

Alternative Plural 

Discrete Continuous 

Finite Denumerable 
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- Discrete finite variable – it has finite number of variants (e.g. mark from 
math - 1,2,3,4,5) 

 
- Discrete denumerable variable – it has denumerable number of variants 

(e.g. age (year), height (cm), weight (kg), ...) 
 

� Continuous variable - it has any value from ℜ or from some subset ℜ (e.g. 
distance between cities, ...) 

 

   Study guide 
 
Imagine a situation when we got a large statistical group at our disposal and you face a 
question how to best describe it. Numbers of values with which we "replace" such a large 
group describe a basic attributes of this group and we shall call it statistical characteristics. 

In following chapters we shall learn how to set statistical characteristics for various types 
of variables and how to represent the larger statistical groups.  
 

1.1 Statistical characteristics of qualitative variables 
 

We know that qualitative variable has two basic types - nominal and ordinal. 
 

1.1.1 Nominal variables 
 

Nominal variable has different but equivalent variants in one group. Number of these variants 
is usually low and that's why the first statistical characteristics we use to describe it will be its 
frequency.   

 
• Frequency ni (absolute frequency)  
 

- is defined as number of occurrence variant of the qualitative variable 
 

In case that qualitative variable has k different variants (we describe their frequency 
n1, n2… nk) in the statistical group (n values large) it must hold true:  
 

nnnnn
k

i
ik ==+++ �

=1
21 ...   

 
If we want express what part of the group forms variables with any variant we use relative 
frequency for description of variable. 

 
• Relative frequency pi  
 

- is defined as: 
 
 

n
n

p i
i =  
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  eventually:  
 
 [ ]%100⋅=

n
n

p i
i

 

 
(We use second formula in case if we want express of the relative frequency in 
percents).  
It must hold true for relative frequency:  

  
 1

1
21 ==+++ �

=

k

i
ik pppp �  

 
When qualitative variables are processed it is good to order frequency and relative frequency 
into so-called frequency table: 

 
 FREQUENCY TABLE  

Absolute frequency Relative frequency Values xi 
ni pi 

1x  1n  1p  

2x  2n  2p  

� � � 

kx  kn  kp  

 
Total nn

k

i
i =�

=1

 1
1

=�
=

k

i
ip  

 
 

The last characteristic for nominal variable is mode. 
 
• Mode 
 

- is defined as a variant name that have for the variable the most frequency  

 
The mode represented a typical element of the group. We don't determine mode in 
case that there is more variants with maximum frequency in the statistical group. 
 

1.1.2 Graphical presentation qualitative variables 
 
The statistics often use graphs for better plasticity of variables analysis. They are these two 
types for nominal variable: 

 
• Histogram (bar chart) 
• Pie chart  

 
Histogram is a classical graph whereof we take variants of the variable on one axis and 
variable frequencies on the second one. Individual values of the frequency are then displayed 
as bars (boxes or vectors, squared logs, cones ...) 
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Examples: 

 

 

 

 

 

 

 

 

 

  
Pie graph represents relative frequencies of the individual variants of the variable. Individual 
relative frequencies are proportionally represent as a sector of a circle (when we change a 
circle to an ellipse we obtain three-dimensional effect). 
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ATTENTION!!! There we must take care of graph description in the pie charts. Marking 
individual sectors by relative frequencies without adding their absolute frequencies is not 
sufficient.   

 
Example: We executed enquiry appertain to implementation high school fee. Following chart 
presents results: 

50% 50%
YES

NO

 
 

These are interesting results, aren't they? But they are true. Now we modify the chart the way 
it was recommended:  
 

11
YES

NO

 
 

 
What do you think now? From the second chart we see that we asked two people - the first 
one said YES and the second one NO. So what have we discovered? Create only such charts 
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as their interpretation was absolutely perceptible. If we obtain a pie chart without absolute 
frequencies ask whether it is an author nescience or it is his purpose.      
 

      Solved example  
 
We made crossroad usage research. Obtained data are in following table. They represent color 
of cars that pass through crossroad. Analyze these data and represent results in graphical 
form.      
 

red blue red green 
blue red red white 
green green blue red 

 
 
Solution: 
It's obvious that it's a qualitative (lexical) variable and considering the fact that there is no 
point in ordering or comparing colors of cars we can say it's a nominal variable. 
       For its descriptions we choose frequency table we determine mode and color of passing 
vehicles we represent by histogram and pie graph. 

 
FREQUENCY TABLE 

Absolute frequency Relative frequency Colors of  
passing cars ni pi 

red 5 42,0125 =  

blue 3 25,0123 =  

white 1 08,0121 =  

green 3 25,0123 =  

Total 12  1,00 

 
We observed 12 cars total. 
 
Mode = red (i.e. in our sample there were mostly red cars) 
 

Colours of passing cars
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1.1.3 Ordinal variable 
 

Now we will continue to ordinal variable description. Ordinal variable (as well nominal 
variable) has various lexical variants into group but these variants can be sort i.e. we can 
define which variant is "smaller" or "bigger". 
     For description ordinal variable we use same statistical characteristics and graphs such as 
for description nominal variable (frequency, relative frequency, mode + histogram, pie graph) 
extended two others characteristics (cumulative frequency and cumulative relative frequency) 
expressing sorting of ordinal variable. 

 
• Cumulative frequency of  i-th variant mi   
 

- it's a number of values of variable showing the frequency of variants less or equal i-
th variant 

 
E.g. we have a variable "classification from statistics". That has these variants: "1", 
"2", "3" or "4". Then for example cumulative frequency for variant "3" will be equal 
number of students who got classification "3" or better.     

 
If there are individual variants sort by their "size" (“

kxxx <<< �21
”) then it must holds 

true: 
 

�
=

=
i

j
ji nm

1

 

 
So it's obvious that cumulative frequency k-th ("the highest") variant is equal measure 
of the variable - n.  

 
nmk =  

 
The second special characteristic for ordinal variable is cumulative relative frequency. 

 
• Cumulative relative frequency of i-th variant Fi  

 
- a part of group are values gaining i-th and lower variant. It is expressed by this 
characteristic. 

 

�
=

=
i

j
ji pF

1

 

 
This is nothing else then relative expression of the cumulative frequency:  

 

n
m

F i
i =  

 
As well as at nominal variable we can present statical characteristics using frequency table at 
ordinal variable. It contains comparing with frequency table of nominal variable also values 
of cumulative and cumulative relative frequencies.  
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FREQUENCY TABLE 

Absolute 
frequency 

 

Cumulative 
frequency 

Relative 
frequency 

Relative cumulative 
frequency 

Values 
xi 

ni 

 

mi pi 
 

Fi 

1x  1n  11 nm =  1p  11 pF =  

2x  2n  21212 nmnnm +=+=  2p  21212 pFppF +=+=  

�  �  �  �  �  

kx  kn  nnnm kkk =+= −1
 

kp  11 =+= − kkk pFF  

Total nn
k

i
i =�

= 1

 ----- 1
1

=�
=

k

i
ip  ----- 

 

1.1.4 Graphical presentation ordinal variables 
 
We made a mention of the histogram and the pie graph for graphical presentation of the 
ordinal variable. But these graphs don't reflect sorting of the individual variants. With this we 
have at command frequency polygon (or ogive) and Pareto graph.    

 
Frequency polygon  
- it's a line graph. The frequency is placed along the vertical axis and the individual variants of 
the variable are placed along the horizontal axis (from "the smallest" till "the highest"). These 
points are connected with lines. 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
Ogive (cumulative frequency polygon) 
- it's a frequency polygon of the cumulative frequency or the relative cumulative frequency. 
The vertical axis is the cumulative frequency or relative cumulative frequency. The horizontal 
axis represents possible variants. The graph always starts at zero at the lowest variant and will 
end up at the total frequency (for a cumulative frequency) or 1.00 (for a relative cumulative 
frequency). 
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Pareto graph 
- it's a bar graph for qualitative variable with the bars arranged according to frequency 
- there are particular variants on horizontal axis ordered from the one with "the biggest" 
importance to "the smallest one" 
 
 

 
 

Consider the decline of cumulative frequency polygon. It's lower as frequency on individual variables 
drops.   
 
 
 

      Solved example 
 
Following data represent size of the t-shirts that were sell in sale of the company CLOTHES.  

 
S, M, L, S, M, L, XL, XL, M, XL, XL, L, M, S, M, L, L, XL, XL, XL, L, M 
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a) Analyze these data and represent results in graphical form.  
b) Determine how much percent of people bought t-shirt L maximal value.  
 

Solution:  
a)   The variable is qualitative (lexical) and t-shirts size can be sort therefore it's an ordinal 

variable. For its description we use frequency table for the ordinal variable and we determine 
a mode. 

  
FREQUENCY TABLE 

Absolute 
frequency 

 

Cumulative 
frequency 

Relative 
frequency 

Relative 
cumulative 
frequency 

T-shirt size 

ni 

 

mi pi 
 

Fi 

S 3 3 14,0223 =  14,0223 =  

M 6 963 =+  27,0226 =  41,0229 =  

L 6 1569 =+  27,0226 =  68,02215 =  

XL 7 22715 =+  32,0227 =  00,12222 =  

Total 22 ----- 1,00 ----- 

 
Mode = XL (the most people bought t-shirt XL value) 
 
Graphical output will be histogram, pie graph and cumulative frequency polygon (we don't 
create pareto graph because we haven't got a technical data).  

 
Graphical output: 
 
                            histogram                                                                pie graph 

 
      cumulative frequency polygon 
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 Total selling was 22 t-shirts. 
 
b)   Answer to this question we get from value of the relative cumulative frequency for variant 
L. We see that 68% of people bought t-shirt L size and smaller. 
 
 

1.2 Statistical characteristics of quantitative variables 
 
For description quantitative variable we can use most of the statistical characteristics that are 
used for ordinal variable description (frequency, relative frequency, cumulative frequency and 
cumulative relative frequency). With these characteristics we add another two characteristics:    

  
• measures of position – those indicate a typical distribution of the variable values 

(dislocation on the numerical axis) 
 
and 
 

• measures of variability – those indicate a variability (variance) of the values round 
their typical position 

 

1.2.1 Measures of position and variability 
 

The most used measure of position is a mean of variable. The mean represents average or 
typical value of the sampling population. The most famous mean for quantitative variable is: 

 
• Arithmetical mean x  

 
 Its value we obtain by means of this formula: 

 

n

x
x

n

i
i�

== !  

 
where: 

ix  ... particular values of the variable 
  n   ... size of the sampling population (number of the values of the variable) 
  
 Properties of the arithmetical mean: 
  

1. ( ) 0
!

=−�
=

n

i
i xx  ,  

 
- sum of all diversions of variable values from their arithmetical mean is equal to 
zero what means that arithmetical mean compense influence of random errors on 
variable  
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2. ( )
( )

��
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�

�

��
�
�

�

�
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== xa
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xa
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x
xa
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i
i

n

i
i

!!:  

 
- if we add a same number to all values of the variable, the arithmetical mean 
increase about this number too 

 

3. ( )
( )

��
�
�

�

�

��
�
�

�

�

=�=ℜ∈∀
��

== xb
n

bx

n

x
xb

n

i
i

n

i
i

!!:
 

 
- if we multiple all values of the variable a same number, the arithmetical mean 
increase the same way  

 
For calculation of sampling population mean the arithmetical mean is not always the best 
solution. For example if we work with a variable representing relative changes (cost 
indexes,...) we use so-called geometrical mean. For calculation of mean in cases when 
variable has a character of unit's part (problems about common work ...) we use harmonical 
mean. 
  
Considering that mean is set from all variable values it carries maximum information about 
sampling population. On the other hand it's very sensitive to so-called outlier observations 
what are values which are extraordinary different from others and they can diverge mean as 
much that it's not representing sampling population any more. To identify outlier observations 
we shall return later. 

 
Among measures of position that are less dependent on outlier observations belong:  

 
• Mode  x̂  

 
In case of mode we will discern between discrete and continuous quantitative variable. 
For discrete variable we define mode x̂  as value of the most frequency of the 
variable (analogous to by the qualitative variable). 

 
But by the continuous variable we think of mode x̂  as value around which is the 
most concentration of variable values. 

For assessment of this value we use shorth. Short is the shortest interval whereof 
lies at least 50% of variable values. In case of sample large as ( )Ν∈= kkn 2  (even 
number of values) k  values lies in short - what is n/2 (50%) variable values. In case of 
sample large as  ( )Ν∈+= kkn 12  (odd number of values) 1+k  values lies in short - 
what is about 1/2 more then 50% variable values (n/2+1/2).   

 
Then we define mode x̂  as centre of the short.  

 
From said it results that short length (top boundary - bottom boundary) is 

unambiguously given but that's not applied to its location nor its mode. 
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If mode can be determined unambiguously we talk about unimode variable when 
variable has two modes we call it bimode. When there are two or more modes in a 
sample it usually signalizes a heterogenity of variable values. This heterogenity can be 
removed by dividing sample into more subsamples (for example bimode mark person's 
height can be divided according to sex into two unimode marks - women's height and 
men's height). 
 

 

      Solved example 
 
The following data represent age of the musicians which played on the concert. The variable 
age is a continuous. Determine mean, short and mode for the variable.   

 
22 82 27 43 19 47 41 34 34 42 35 
 

Solution:  
 

a) Mean:  
 

In this case we use arithmetical mean: 
 

year
n

x
x

n

i
i

7,38
11

3542343441471943278222! =++++++++++==
�

=  

 
Average age is 38,7 year for musician played on the concert. 

 
b) Shorth: 

 
Our sample population has 11 values. 11 is odd number of values. 50% of this is 5,5 and 
the nearest higher natural number is 6 - otherwise: n/2+1/2 = 11/2+1/2 = 12/2 = 6.  There 
out imply that 6 values will be lies in the shorth. 

 
And following advance?  

 
• we sort variable 
• we determine size of all intervals (having 6 elements) in which 

51 ++ <<< iii xxx �   

• the shortest of these intervals is shorth (size of the interval = 
ii xx −+5
) 
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Original data Sorting data Size of intervals (having 6 
elements) 

22 19 16 (= 35 – 19) 
82 22 19 (= 41 – 22) 
27 27 15 (= 42 – 27) 
43 34 9  (= 43 – 34) 
19 34 13 (= 47 – 34) 
47 35 47 (= 82 – 35) 
41 41  
34 42  
34 43  
42 47  
35 82  

 
 
From table we see that the shortest interval has size 9. The only one interval corresponds 
to this size: 43;34 . 

 
Shorth = 43;34 . This we will interpret as half of musicians are 34 to 43 years old. 

 
c) Mode: 

 
Mode is defined as center of shorth: 

 

5,38
2

4334
ˆ =+=x  

 
Mode = 38,5 year, i.e. typical age is 38,5 year for musician played on the concert. 

 
 
Other characteristics for description quantitative variable are quantiles. Those serve for more 
detailed illustration of distribution of the variable values within the scope of the population. 

 
• Quantiles 

Quantiles are characteristics which describe of location of individual values (within 
the scope variable). The quantiles are resistant to outlier observation analogous to 
mode. Generally the quantile is define as value which divide sample into two parts - 
the first one contain values that are less than given quantile and the second one contain 
values that are bigger or equal than given quantile. We must have got sorted data 
(from the least to the biggest value).   
 
Quantile of variable x which separates 100% lesser values from rest of sample (i.e. 
from 100(1-p)% values) we call 100p % quantile and we mark it xp. 

 
In work we most often meet these quantiles: 

 
• Quartiles 

 When division is into four parts the values of the variate corresponding to 25%,   50% 
 and 75% of the total distribution are called quartiles. 

 



 20 

Lower quartile x0,25 = 25% quantile (it divides a sample of data so that 25% of 
values is less than this quartil, i.e. 75% is bigger (or equal))  
 
Median x0,5 = 50% quantile (it divides a sample of data so that 50% of values is 
less than median and 50% of values is bigger (or equal)) 

 
Upper quartile x0,75 = 75% quantile (it divides a sample of data so that 75% of 
values is less than this quartil, i.e. 25% is bigger (or equal)) 
 
 
Example: 

 
Data  6 47 49 15 43 41 7 39 43 41 36 
Ordered Data  6 7 15 36 39 41 41 43 43 47 49 
Median  41 
Upper quartile  43 
Lower quartile  15 

 
 

The difference between the 1st and 3rd quartiles is called the inter-quartile range 
(IQR).  
 

25,075,0 xxIQR −=  

 
Example: 
 
 
 
 
 
 

• Deciles – x0,1; x0,2; ... ; x0,9 
 

The deciles divide the data into 10 equal regions. 
 

• Percentiles – x0,01; x0,02; …; x0,99 
  

The percentiles divide the data into 100 equal regions. 
 
For example, the 80th percentile is the number which has 80% below it and 20% 
above it. Rather tan counting 80% from the bottom, count 20% from the top. 
 
Note: The 50th percentile is the median. 

 
• Minimum xmin and Maximum xmax 

 
0min xx =  , i.e. 0% of values are less than minimum 

Data  2 3 4 5 6 6 6 7 7 8 9 
Upper quartile  7 
Lower quartile  4 
IQR  7 - 4 = 3 
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1max xx =  , i.e. 100% of values are less than maximum 
 

 
The quantiles we determine by means of the following process:  

 
1. The sample population we order by size 
 
2. Of the individual values we assign the sequence so that the least value will be at 

first place and the highest value will be at n-th place (n is number of values) 
  
3. 100p% quantile is equal of variable value with sequence zp where: 5,0+⋅= pnz p

 

        We round zp to integer number !!!!! 
         
      ATTENTION!!!!  

When we have even number of data median is not uniquely defined. Any number 
between two middle values (including these values) can be taken as median. The most 
often we take middle of these values.  

 
Now we talk about relation between quantiles and cumulative relative frequency. 
The value p denotes cumulative relative frequency of quantile xp i.e. relative 
frequency of those variable values that are lesser than quantile xp. Quantile and 
cumulative relative frequency are inverse notions. 

 
Graphical or tabular representation of the ordered variable and appropriate cumulative 
frequencies is designated as distribution function of the cumulative frequency or 
empirical distribution function.   

 
• Empirical distribution function F(x) for the quantitative variable 

 
We have ordered sample population (x1<x2< … <xn) and we denote p(xi) as 
relative frequency of the value xi. Then it must hold true for empirical distribution 
function F(x):  
 

( ) ( )
	
	



		
�

�

<

−≤≤≤<

≤

= +
=
�

xxfor

njxxxforxp

xxfor
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n
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0

1
1

1

 

 
The empirical distribution function is monotonous increasing function and it is 
continuous from the left.   
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• MAD 

 
MAD is a name for median absolute deviation from the median. 

 
We determine MAD in this way:  

 
1. we order the sampling population by size 
 
2. we determine a median of the sampling population 
 
3. for each value we determine absolute value of its deviation from the median 
 
4. the absolute deviations from the median we order by size 
 
5. now we determine a median of the absolute deviations from the median i.e. 

MAD 
 

      Solved example 
 
We have these data: 22, 82, 27, 43, 19, 47, 41, 34, 34, 42, 35 (these are the same data as the 
previous solved example). 
Determine: 

a) all quartiles 
b) inter-quartile range 
c) MAD 
d) draw in an empirical distribution function 
 

Solution: 
 

0 

F(x) 

p(xn) 

p(x2) 

x3 x1 xn-1 xn ........ x2 

1 

x 
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a)  We must determine lower quartile x0,25; median x0,5 and upper quartile x0,75. At first 
we order the data by size and we assign a sequence to them.  

 
Original data Ordered data Sequence 

22 19 1 
82 22 2 
27 27 3 
43 34 4 
19 34 5 
47 35 6 
41 41 7 
34 42 8 
34 43 9 
42 47 10 
35 82 11 

 
Now we can assign a sequence of the variable values for individual quartiles i.e. also their 
values: 

 
Lower quartil x0,25:   27325,35,025,0.1111;25,0 25,0 =�≅=+=�== xznp p

, 

 
i.e. 25% musicians is younger then 27 years (75% of them have 27 years and more). 

 
Median x0,5:     3565,05,0.1111;5,0 5,0 =�=+=�== xznp p

 

 
i.e. a half of the musician is younger then 35 years (50% of them have 35 years and more). 

 
Upper quartil x0,75:   43975,85,075,0.1111;75,0 75,0 =�≅=+=�== xznp p

  

 
i.e. 75% musicians is younger then 43 years (25% of them have 43 years and more). 

  
b)  Inter-quartile range IQR: 

   
IQR = x0,75 – x0,25 = 43 – 27 = 16 

 
c) MAD 

 
If we want determine this characteristic we must act upon the definition (a median of absolute 
deviations from the median). 

   
x0,5 = 35 
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Original 
data xi 

Ordered 
data yi 

Absolute values of 
deviations of the ordered 
data from their median 

5,0xyi −
 

Ordered absolute values 
Mi 

22 19 351916 −=  0 

82 22 352213 −=  1 

27 27 35278 −=  1 

43 34 35341 −=  6 

19 34 35341 −=  7 

47 35 35350 −=  8 
41 41 35416 −=  8 

34 42 35427 −=  12 

34 43 35438 −=  13 

42 47 354712 −=  16 

35 82 358247 −=  47 

 

865,05,0.1111;5,0 5,0

5,0

=�=+=�==
=

Mznp

MMAD

p

 

 
(MAD is a median absolute deviation from the median i.e. 6th value of ordered absolute 
deviations from the median) 

 
MAD = 8.  

 
d)  The last thing is draw in an empirical distribution function. Here's its definition: 
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- we write ordered variable values their frequencies and relative frequencies into the table 

and of them we derive an empiric distribution function: 
  

Original 
data xi 

Ordered 
data ai 

Absolute 
frequencies of the 
ordered values ni 

Relative 
frequencies of the 
ordered values pi 

Empirical 
distribution 
function F(ai) 

22 19 1 1/11 0 
82 22 1 1/11 1/11 
27 27 1 1/11 2/11 
43 34 2 2/11 3/11 
19 35 1 1/11 5/11 
47 41 1 1/11 6/11 
41 42 1 1/11 7/11 
34 43 1 1/11 8/11 
34 47 1 1/11 9/11 
42 82 1 1/11 10/11 
35     
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From definition of the empirical distribution function F(x) results that F(x) is equal 0 for all x 
<19, F(x) is equal 1/11 for 22�x>19, F(x) is equal 1/11 + 1/11 for 27�x> 22, etc. 
 

  
x ( 19;∞−  ( 22;19  ( 27;22  ( 34;27  ( 35;34  

F(x) 0 1/11 2/11 3/11 5/11 
 

x ( 41;35  ( 42;41  ( 43;42  ( 47;43  ( 82;47  ( )∞;82  

F(x) 6/11 7/11 8/11 9/11 10/11 11/11 

 
 
 
Means, mode and median (i.e. measures of position) represent imaginary centre of the 
variable. But a distribution of the individual values of the variable round of this centre (i.e. 
measures of variability) interested us too. 
        The following three statistical characteristics allow a description of sampling population 
variability. Short and inter-quartile range we include among measures of variability.    

 
• Sample variance s2 

 
- it is the most frequently measure of variability  
 
The sample variance is given by: 
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- the sample variance is the sum of the squared deviations from their mean divided 
by one less than the sample size 

 
General properties of the sample variance are for example: 

  

� The sample variance of a constant number is equal  
 

Empirical distribution function

0,0
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otherwise: if all variable values are the same the sampling has zero 
diffusenesses  
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otherwise: if we add a same constant number to all variable values the sample 
variance won't be change 
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otherwise: if we multiple all variable values an arbitrary constant number (b) 
the sample variance increase about square of this constant number (b2) 

  
Disadvantage for use the sample variance as a measure of variability is that a size of this 
characteristic is square of the variable size. For example: if the variable is cash in EUR than 
the sample variation of this variable will be in EUR2. That is why we use other measure of 
variability namely a standard deviation. 

 
• Standard deviation s 

 
- it is calculated by taking the square root of the variance  
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Other disadvantage for use the sample variation and the standard deviation is that we can't 
compare variability of the variable that are express in various units. Which variable has bigger 
variability - height or weight of an adult? Coefficient of variance will give us answer for this 
question.   

 
• Coefficient of variation Vx 

 
- it represents relative measure of variability of the variable x and it is often 
expressed as a percentage 
- it is the ratio of the sample standard deviation to the sample mean: 

 
        

x
s

Vx =  
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      Solved example 
 
Firm producing the table glass developed less expensive technology for improving glass 
resistant against fire. For testing there was selected and cut in half 5 table glasses. One half 
was treated by a new technology while the other one was left for control. Both halves were 
tested for increasing effect of fire till they crack. These results were obtained:     

 
Critical temperature (glass cracked) [oC] 

Old technology xi New technology yi 
475 485 
436 390 
495 520 
483 460 
426 488 

 
 

Compare both technologies by means of basic characteristics of the exploratory analysis 
(mean, variation,...).  

 
Solution: 
 
- at first we try compare both technologies with the help of the mean: 
  
Mean for the old technology: 

 

[ ]C
n

x
x o

n

i
i

0,463
5

4264364751 =+++==
�

= �  

 
 

Mean for the new technology: 

[ ]C
n

y
y o

n

i
i

6,468
5

4883904851 =+++==
�

= �  

 
Based on calculated means we could say that we recommend new technology because critical 
temperature is almost 6oC higher using it.  

 
- now we determine measures of variability  
 
The old technology: 

 
Sample variance: 
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Standard deviation: 
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New technology: 

 
Sample variance: 
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Standard deviation: 
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Sample variance (standard deviation) is much bigger for new technology. What does it mean? 
Look at the graphical representation of measured 
data. Critical temperatures are much more spread 
what mean this technology is not well managed yet 
and its use can't guarantee higher quality of 
production. In this case it can come to significant 
improving as well as significant reducing of 
critical temperature. That's why the new 
technology should be subjected to continuous 
research. 

These conclusions are based only on 
exploratory analysis. Statistics provides us more 
exact methods for analysis of such problems 
(hypothesis testing). 
 
 
And now we go back to exploratory analysis as such. We made a mention of outliers. For now 
we know that as the outliers we specify these variable values which are extraordinary 
different from others and that influence for example representatives of mean. How to identify 
these values?  
 

• Identification of the outliers 
 

In the statistical practice we can meet with a few methods of the outliers' 
identification. We'll show three of them. 

 
1. The outlier can be such value xi that is far more then 1,5 IQR from lower (or 

upper) quantile.  
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( ) ( )[ ] outlieranisxIQRxxIQRxx iii �+<∨−< 5,15,1 75,025,0

 

 
2. The outlier can be such value xi where absolute value of z-axis is greater then 

3.  
 

s
xx

axisz i
i

−
=− .  

 
( ) outlieranisxaxisz ii �>− 3.  

 
3. The outlier can be such value xi where absolute value of median-axis is greater 

then 3.  
 

MAD

xx
axismedian i

i .483,1
. 5,0−

=−  

 
( ) outlieranisxaxismedian ii �>− 3.  

 
For outliers identification in a concrete problem we can choose any of these three 
rules. Z-axis is "less strict" than median-axis to outliers. It's caused by z-axis is 
determine on the basis of mean and standard deviation and they are strongly 
influence of outliers values. While median-axis is determine on the basis of 
median and MAD and they are immune to outliers.    
 
When we decide that any value is an outlier we must distinguish a type of that 
outlier. In case that outlier is caused by:  

 
• blunders, typing errors, evincible failure of the people or the technology ... 
• effects of faults or wrong measurement, ... 

  
It comes to this if we know the outlier cause and if assume that will not occur 
again we can cast out this outlier from other process. In the others cases we must 
consider if we can cast out the outliers and at the same time won't get about 
important information any events which are with low frequencies.   
 

The others characteristics which describe qualitative variable are skewness and kurtosis. 
Formulas for calculation of these characteristics are rather complicated that is why we 
determine these characteristics by means of some statistical program. 

 
• Skewness  

 
- Skewness is defined as asymmetry in the distribution of the variable values. 
Values on one side of the distribution tend to by further from the "middle" than 
values on the other side. 
 
- Its value we obtain by means of this formula: 
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Skewness interpretation: 
 
0=α  ... variable values are distributed symmetrically round the 

mean 
0>α  ... there predominate values less then mean by the variable  
0<α  ... there predominate values greater then mean by the variable 

 
 

 
 
 
 
 
 
 
 
 

 
 

• Kurtosis  
 

- Kurtosis represents concentration of variable values round their mean.  
 
- Its value we obtain by means of this formula: 
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Kurtosis interpretation: 
 
0=β  ... Kurtosis corresponds to normal distribution   
0>β  ... "peaked" distribution of the variable  
0<β  ... "flat" distribution of the variable 

 
 
 
 
 
 
 

0

10

20

30

40

50

60

1 2 3 4 5 6 7

0

10

20

30

40

50

60

1 2 3 4 5 6 7

0

10

20

30

40

50

60

1 2 3 4 5 6 7

�=0 �>0 �<0 

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

0

20

40

60

80

100

1 2 3 4 5 6 7
0

5

10

15

20

25

30

1 2 3 4 5 6 7

�=0 �>0 �<0 



 31 

 
 

 
 

Now we have defined all numerical characteristics for description of the quantitative 
variable. We have show left how we can graphically represent quantitative variable.  

 

1.2.2 Graphical presentation quantitative variable 
 
Box plot 

 
A box plot is a way of 

summarizing a set of data 
measured on an interval scale. It is 
often used in exploratory data 
analysis. It is a type of graph which 
used to show the shape of the 
distribution, its central value, and 
variability. The picture produced 
consists of the most extreme values 
in the data set (maximum and 
minimum), the lower and upper 
quartiles, and the median. 

A box plot is especially helpful 
for indicating whether a 
distribution is skewed and whether 
there are any unusual observations 
(outliers) in the data set.   

 
 

Notice.: A box plot construction begins drawing in outliers and until then we mark the others 
characteristics (min1, max1, quartiles and shorth). 

 
Stem and leaf plot 

 
We saw it that simplicity is an advantage of box plot. But information's about concrete values 
of variable are missing us sometimes. We would digestedly inscribe the numeric values. To it 
we use stem and leaf plot.  

 
We have a variable which represent average month pay of bank employees in Czech 
Republic. 

 
Average month pay [CZK] 

10 654 9 765 8 675 12 435 9 675 10 343 18 786 15 420 8 675 7 132 
6 732 6 878 15 657 9 754 9 543 9 435 10 647 12 453 9 987 10 342 

 
Average month pay [CZK] - ordered data 

6 732 6 878 7 132 8 675 8 675 9 435 9 543 9 675 9 754 9 765 
9 987 10 342 10 343  10 647 10 654 12 435 12 453 15 420 15 657 18 786 

shorth 
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upper quartil 
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lower quartil 
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How we have to inscribe these data. 
The information about "unimportant" 
places we neglect and we inscribe 
ordered data only pursuant to higher 
places. For our information are 
interesting values from third place. The 
values that are on a fourth place we 
write down sorted. Herewith they create 
a stem. Under the graph we adduce a 
stem width. This width denotes 
coefficient whereby we multiply values 
in the graph.   

The second column in the graph -leaves - is numbers which represent "important" place. 
These numbers we write in appropriate rows.  

The third column is absolute frequency for particular rows. 
 
For example: the first row in the graph represents two values - (6.7 and 6.8)*103 CZK i.e.  

6700 CZK and 6800 CZK, the sixth row represents two values too - (12.4 and 12.4)*103 CZK, 
i.e. two employees have average month pay 12400 CZK, etc. 

  
It exist various modifications of this 

graph. For example in the third column 
could be cumulative frequencies 
whereas in the row whereof is a median 
we show absolute frequency (in 
parentheses) and towards this row the 
frequencies cumulate both from the 
least values and from the highest values 
- see picture.  

 
 
Finally you can take exception that you can make different types of construction of the stem 
and leaf plot for one problem. Nowhere is it said which place of variable is important and 
which one is not important. This conclusion depends to you. We can say one tip - the long 
stem with the short leaves and the short stem with long leaves indicate of incorrect choice of 
scale. Look at picture.  

 
 
 
 
 
 

 
 
 
 
 
 
 

Stem width  

 
6 78 2 
7 1 1 
8 66 2 
9 456779 6 
10 3366 4 
12 44 2 
15 46 2 
18 7 1 

   
*103 

Stem 

Leaves Frequencies 

Stem width 

 
6 78 2 
7 1 3 
8 66 5 
9 456779                       (6) 
10 3366 9 
12 44 5 
15 46 3 
18 7 1 

   
*103 

Stem 

Leaves Cumulative 
frequencies 

0 66788999999 11 
1 000022558 9 

   
*104 



 33 

 
 
 
 
 
1. What is exploratory statistics concerned with? 
 
2. Characterize the base types of variables. 
 
3. Which statistical characteristics can be contained in frequency table (for what type of 

variable)? 
 
4. What are the outliers and how we define them? 
 
5. Which characteristics is sensitive on the outliers occurrence: 

a) Median 
b) Arithmetical mean 
c) Upper quartil 

 
6. How we graphically represent the qualitative (quantitative) variables? 
  
7. This box plot describes profits of the students during holiday.  

Denote assertions which do not correspond with displayed reality. 
  
a) A student earned max 19 thousands  CZK 
b) Inter-quartile range is cca 10 thousands CZK 
c) Half of students earned less than 11 thousands CZK 
d) Shorth is cca (5;15) thousands CZK 
 
 

 
 

1
9 

  Questions  
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Example  1: The following data represent country of the car production. Analyze these data 
(frequency, relative frequency, cumulative frequency and cumulative relative frequency, mode) and 
represent them in graphical form (histogram, pie graph). 
 

USA USA Germany Czech Rep. 
Germany Germany Germany Czech Rep. 

Czech Rep. Czech Rep. USA Germany 
 

 
Example  2: The following data represent waiting time (min) of the customer to the service. Draw box 
plot and stem and leaf plot. 

 
120 80 100 90 
150 5 140 130 
100 70 110 100 

 
Example  3: During a  traffic survey there was an utilization of crossroad enterance observed. Student 
making research always wrote down a number of cars waiting in queue when green light jumped on. 
These are his outcomes: 

 
3  1  5  3  2  3  5  7  1  2  8  8  1  6  1  8  5  5  8  5  4  7  2  5  6  3  4  2  8  4  4  5  5  4  3  3  4  9  6  2  1  
5  2  3  5  3  5  7  2  5  8  2  4  2  4  3  5  6  4  6  9  3  2  1  2  6  3  5  3  5  3  7  6  3  7  5  6 
 
Draw box plot, empirical distribution function and calculate mean, standard deviation, shorth, mode 
and inter-quartile range. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

   Problems  
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   Study time:  70 minutes 
 

2. PROBABILITY THEORY  
  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Aim - you will be able to 

• characterize probability theory  

• explain general notions of probability theory  

• explain and use general relations between events 

• explain a notion of probability 

• define probability by basic axioms 

• define properties of probability function  

• use a conditional probability 

• explain theorem of total probability and Bayes theorem 



 36 

   Study time:  20 minutes 
 

2.1. General notions 
 

 

 
 

  Explication 
 
Probability Theory is the deductive part of statistics.  Its purpose is to give a precise 
mathematical definition or structure to what has been thus far an intuitive notion of 
randomness.  Making randomness more precise will allow us to make exact probability 
statements.  For example when discussing association, we could only make rough statements 
in terms of tendencies. 
Mathematically, probability is a set function. That is, it is a function defined on some domain 
of sets.  Therefore, we begin this discussion my considering the fundamental nature of sets 
and the basic operations performed on sets, the elements of the domain of our probability 
function. 

• General notions of the probability theory  

Definition of Set - set A is a collection of elements. Elements are basic intuitive 
mathematically undefined entities.  To define a set, it is necessary to be able to determine 
whether any element is included or not included in the set.  The notion of inclusion is also an 
intuitive undefined concept. 
 
Definition of Elementary Events - In the case of probability theory, the elements of sets on 
which probability measures are defined are called elementary events. In practice, these 
elementary events may be measurement units, cases, or sample points.  

Example:   

{reverse, obverse} –when tossing the coin   

{1,2,3,4,5,6} – when tossing the dice   

 
We denote a set of all results �. This set we call sample space (of the elementary events). 
The elementary event {�} is a subset of the � set which contains one element � from � set, 
�∈  �.  
Then the event A will be an arbitrary subset of  �, A ⊂  �. 

    Aim  
• characterize probability theory  

•  explain general notions of probability theory  
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From statistics data we can easily determine that share of boys born in particular years with 
respect to all born children is moving around 51,5%. Despite the fact that in individual cases 
we can't foretell a sex of a child we can relatively exactly guess how many boys we find 
among 10 000 born children.  

From this example imply that relative frequencies of some events are stabilized with increase 
repetition number on certain values. We shall call this phenomenon a stability of the relative 
frequencies. This stability of relative frequencies is an empiric basis of the probability theory. 
Relative frequency is number n(A)/n where n is a total number of experiments and n(A) is a 
number of experiment realizations in which event A became. 

 
 

  Summary of notions 
 

Probability theory is mathematical branch whose logical structure is created axiomatically. 
Mathematic statistics is a science which is concerned with questions of data mining data 
analyzing and results forming.  
Random experiment is every finite process whose result is not given in advance by 
conditions upon whose is runed.  
Sample space � is a set of all possibly results of the experiment. 
Relative frequencies of some events with increase repetition number show certain stability. 
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   Study time:  20 minutes 
 

2.2. Operations with the elementary events  
 

 

 
 

 Explication 
 

What are types of the elementary events? 

If the elementary event � ∈  � (� ∈  A) came then we can say that an event A came with the 
experiment realization. We denote this result � ∈  A as result favourable to the event A. 
 
Certain event 
- is the event which become with every realization of the experiment. It is equivalent with the 
� set. 
Certain event is for example: we toss one of these numbers 1,2,3,4,5,6 (while tossing a dice) 
 
Impossible event 
- is the event which can never become in the experiment. We will denote it as∅ .  
Impossible event is for example: we toss number 8 (while tossing a dice). 
 

What are relations between events? 

Operations on Sets - The operations of union, intersection, complementation (negation), 
subtraction, the concept of subset, and the null set and universal set or sample space make up 
the algebra of sets. 
 
Intersection A ∩ B  
The set of all elements that are both in A and in B.  
 
 Graphic example:  
                                { }B    ∈∧∈= ωωω ABA�  

 
 
 
 
 

    Aim  
•  types of the elementary events 

•  general relations between events  
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Example – tossing a dice: event A – we toss a number 2 ,3 or 4 and event B – we toss a even 
number. It is obvious that A ∩ B ={2,4}.  
 
Union A ∪ B 
The set of all elements that are either in A or in B. 
  
 Graphic example:  
                       { }BABA ∈∨∈= ωωω     �  

 

A B 

 
 
Example – tossing a dice: Event A = {1,3,4} and event B is when we toss even number. It’s 
obvious that A ∪ B ={1,2,3,4,6}.  
 
Disjoint events A ∩ B = ∅ 
Two events A and B can’t become together. They have none common result. 
 
Example – tossing a dice: Event A – we toss even number and even B – we toss odd number. 
These events never have a same result. If event A become  than event B can’t become.  
 
Subsets (Subevent) A ⊂ B  
A is a subset of B if every element of A is also an element of B. It’s mean if event A become 
than event B become too. 
  
 Graphic example:  
                                 { } A BBA ∈�∈⇔⊂ ωω  
 

          

A B 
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A 

B 

 
 
Example – tossing a dice: Event A – we toss number 2 and event B – we toss even number. 
The event A is subevent of the event B.  
 
 
Events A and B are equivalent  A = B if A ⊂ B and at the same time B ⊂ Α.  
 
Example – tossing a dice: Event A – we toss even number, event B – we toss number what is 
divide of number 2. These events are equivalent.  
 
Subtraction  A-B  
The set of all elements that are in A but not in B 

                           
{ }B A   =  B - 

B A   =  B - 

∉∧∈ ωωωA

A �  

 
Graphic example:  

 

A B 

 
 

Example – tossing a dice: Event A – we toss a number greater than two and event B – we toss 
an even number. Subtraction of the events A and B is an event A – B ={3,5}. 
 
Complement of the event A (opposite event) 
The set of all elements that are not in A. 
                         { }AA ∉= ωω    
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Graphic example:                  
 

A 

 
 
Example – tossing a dice: Event A – we toss an even number, then an event A  - we toss an 
odd number.  
 
 
DeMorgan's Laws  
- DeMorgan's Laws are logical consequences of the fundamental concepts and basic 
operations of sets 
 
1. law 
The set of all elements that are neither in A nor in B. 

        BA = BA ��  
 

 

A 
B 

 
 
 
2. law 
The set of all elements that are either not in A or not in B. 

                BA = BA ��  
 

 
 
 

Ω 



 42 

Mutually disjoint sets and partitioning the sample space  
The collection of sets {A1, A2, A3, . . .  } partition the sample space Ω: =ji AA� ∅  
for ji ≠  

                                 
n

1i
�

=

=Ω iA  

 
 

A A A 

A 

A 

A 

A 

1 2 3 

4 

5 

6 7 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ω 
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   Study time:  30 minutes 
 

2.3. Probability theory 
 

 

 
 

 Explication 
 

Notion of probability 

Probability of the event A is a number P(A) which has a property that a relative 
frequency of the event A with increase realizations number is approaching to the 
number P(A). 

This probability definition is known as classic probability definition. 

Now we introduce axiomatic probability definition. 

Axiomatic probability definition 

Probability space is a triad (�, S, P) where  
(i) � is sample space (elements of � are elementary events) 
(ii) S  is a set of subsets of � that it holds: 

a) �∈S; 
b) if  A∈S then A = � – A  ∈  S ; 

c) if A1, A2, A3, . . . ∈  S  then �
∞

1=i
iA ∈  S 

Elements of S we denote as events. 
 
(iii) P is function from S  to  < 0,1 > such that it holds: 

a) P(�) = 1- probabilities are scaled to lie in the interval [0,1]; 
b) P( A ) = 1– P(A)   for every A∈S ; 

    Aim  
• notion of probability 

• basic theorems and axioms of probability  

• types of probability  

• conditional probability  

• theorem of total probability and Bayes theorem 
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c) For a collection of mutually disjoint sets, the probability of their union is 
equal to the sum of their probabilities. 

 

{B} P +{A} P =B} {A  P
  then,  =  B A   If

�

∅∩  

 
In general, 

}P{  =  }{ P

j,  i ;  j i,  1   , = A  

11=i

j

�
∞

=

∞

≠∞≤≤∀∅∩

i
ii

i

AA

A

�

 

                  
                        Function P is called probability measure or shorter probability. 
  
Example – tossing a dice: 
� = {1,2,3,4,5,6,}, 
S is a set of subsets of � (sometimes we denote S = exp �) and probability is defined by 

P(A)=
6

cardA
 where card A is number of set A elements.  

Basic Theorems of Probability 

The following theorems are the logical consequences of the three basic probability axioms we 
have postulated. 
 

1. For disjoint events A and B hold:  
      ∅∩   =  B A  then        

P{B} + P{A} = B} P{A �
 

 
2. If for two events A,B hold:  
      A  B ⊂ A} P{    B} P{ then  ≤  
      - note that A is partitioned by B and its complement, and hence P{A} is sum of these  
        two parts 

 
3. For every event A holds: P }A{  = 1- P{A}  

- the union of the two sets is the sample space, the intersection is the null sets 
 

4. It holds:  P }  {∅ = 0 
 
5. It hold: }AP{B- P{B}     A}-B P{ �=  

- note that B-A and B intersection A are two disjoint sets whose union is B 
 

6. Especially if B A ⊂  P{A}- P{B}     A}-B P{then  =  
                     
7. For arbitrary events A,B hold: 

B}P{A-P{B}+P{A}=B}P{A ∩∪       
        

8. Follows from de Morgan's laws 
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       }B  A P{ - 1  =                  

 B} A  P{ - 1  =  B} A  P{

∩
∪∪

 
 

Definition of Conditional Probability 

The definition of conditional probability determines how probabilities adjust to changing 
conditions.  When we say that the condition B applies, we mean that the set B is known to 
have occurred and therefore the rest of the sample space in the complement of B has zero 
probability.  Under these new circumstances, the revised probability of any other event, A, 
can be determined from the following definition of conditional probability: 
 

   P{B}
B}P{A

B}P{A
∩=

        
            
By this formula, the probability of that part of the event A which is in B or intersects with B is 
revised upwards to reflect the condition that B has occurred and becomes the new probability 
of A. It is assumed that the probability of B is not zero. 
 

 
 

B}P{A  - probability of the event A conditional by the event B 

 

Conditional Probability Definition of Independence 

If the condition that B has occurred does not affect the probability of A, then we say that A is 
independent of B. 
 
   {A} P  = B}{AP  
 
From the definition of conditional probability, this implies 
 

   
P{B}

B}P{A
  =  {A}

�
P  

 
and hence, 
 
   P{B}P{A}  = B}P{A ⋅�  
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It is clear from this demonstration that if A is independent of B, then B is also independent of 
A. 
 
Example – tossing a dice: 
For events A - "we toss 1 in the first toss" and B - "we toss 1 in the second toss" and event C 
= A ∩ B - "we toss 1 in the both tosses" then it holds: 

P{C} = P{A ∩ B} = P{A}.P{B} =  
36
1

6
1

6
1 =⋅  

Theorem of Total Probability 

If a collection of sets {B1, B2, B3, . . ., Bn} partition the sample space Ω, that is, 
 

  
Ω

≠∀∅=

=

  =  

   ;

1
�

�

n

i
i

ji

B

jiBB
 

 
 then for any set A (P{A}�0) in the sample space Ω, 

 

  � ⋅
n

1=i
ii }P{B}BP{A   =  P{A}  

 
n=7 

1 2 3

4

5

6 7

B B B

B

B

B

B
� 

 
 
Proof: Since the collection of sets {B1, B2, B3, . . ., Bn} partitions the sample space Ω, 

 

 �
n

1=i
i}BP{A   =  P{A} �  

 
From the definition of conditional probability 
 

 }P{B }BP{A = }BP{A iii�  
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Bayes Theorem  

If the collection of sets {B1, B2, B3, . . ., Bn} partitions the sample space Ω, then 
 
 

�
=

n

i

P
A

1
ii

kk
k

}P{B }B{A

}P{B }BP{A
  =  }P{B

 

 
Proof: From the definition of conditional probability, 

  

P{A}
}B{P{A}P

  =
P{A}

}P{B
  =    }P{B kk

k
A

A
�

 

 
Substituting for P{A} from the Theorem of Total Probability, the proof follows. 
 
Graphical representation of Bayes theorem (vyšrafovaná plocha znázor�uje jev A):  
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PROBABILITY THEORY – SOLVED EXAMPLES 
 

      Solved example 
 
Probability of failing of the extinguishing system is 20%. Probability that alarming system 
fails is 10%  and probability that both systems fail is 4%. What is a probability that: 
a) at least one system will be working? 
b) both systems will be working? 

 
Solution:  

 
We denote:  H  ...  extinguishing system works  

          S   ...  alarming system woks 
 

We know that: ( ) 20,0=HP  
  ( ) 10,0=SP  
  ( ) 04,0=∩ SHP  
 

We must find: 
 

ada)  ( )SHP ∪  
   

We have two possibilities for solving: 
 
By the definition: Events H and S are not the disjoint events and hence: 
 

( ) ( ) ( ) ( )SHPSPHPSHP ∩−+=∪ , 
 
but would be a problem determine a ( )SHP ∩  
 
 
By the opposite event: From de Morgan’s laws we can write:  
 

( ) ( ) ( )SHPSHPSHP ∩−=∪−=∪ 11 , 
 

( ) 96,004,01 =−=∪ SHP  

 
The probability (that at least one system will be working) is 96%. 

 
adb)  ( )SHP ∩  

 
We can’t solve it by the definition: 
 
 ( ( ) ( ) ( ) ( ) ( )HPHSPSPSHPSHP ⋅=⋅=∩ ), 
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because we have no information about dependency of the failures of the individual systems. 
Hence we try to use the opposite event: 
 

( ) ( ) ( ) ( ) ( ) ( )[ ]SHPSPHPSHPSHPSHP ∩−+−=∪−=∩−=∩ 111 , 
 

( ) ( ) ( ) ( )[ ] [ ] 74,004,010,020,011 =−+−=∩−+−=∩ SHPSPHPSHP  

 
The probability (that both systems will be working) is 74%. 
 
 

      Solved example 
 
120 students passed mathematics and physics exams. 30 of them failed to pass both exams. 8 
failed to pass only math exam and 5 failed to pass only physics exam. What is probability that 
random student: 
a) passed math exam if we know that he failed to pass physics exam 
b) passed physics exam if we know that he failed to pass math exam 
c) passed math exam if we know that he passed physics exam 
 
Solution:  

 
We denote: M ... he passed mathematics exam 
                    F ... he passed physics exam 

 
We know that:  

( )
120
30=∩ FMP  

  ( )
120

8=∩ FMP  

  ( )
120

5=∩ FMP  

 
We must find: 

 
ada)  ( )FMP  

 
by the definition of conditional probability: 

 

( ) ( )
( )

( )
( ) ( )FMPFMP

FMP
FP

FMP
FMP

∩+∩
∩=∩= , 

 

( ) ( )
( ) ( ) 14,0

7
1

35
5

120
30

120
5

120
5

≅==
+

=
∩+∩

∩=
FMPFMP

FMP
FMP

 

 
The probability (that he passed math exam if we know that he failed to pass physics exam) is 
14%. 
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adb)  ( )MFP  

 
the same way as ada): 

 

( ) ( )
( )

( )
( ) ( )MFPMFP

MFP
MP

MFP
MFP

∩+∩
∩=∩= , 

 

( ) ( )
( ) ( ) 21,0

19
4

38
8

120
30

120
8

120
8

≅==
+

=
∩+∩

∩=
MFPMFP

MFP
MFP

 

 
The probability (that he passed physics exam if we know that he failed to pass math exam) is 
21%. 

 
adc)  ( )FMP  

 
from the definition: 

 

( ) ( )
)(FP
FMP

FMP
∩= , 

 
we have two possibilities: 

 
1)  

( ) ( ) ( )
( )

( )
( ) ( )[ ]

( ) ( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ] ( )[ ]
( ) ( )[ ]

( ) ( ) ( )[ ]
( ) ( )[ ] 91,0

85
77

120
85

120
77

120
30

120
5

1

120
30

120
8

120
5

1

1
1

1
1

1
1

1
1

1
1

)(

≅==

��

�
��

� +−

��

�
��

� ++−
=

∩+∩−
∩+∩+∩−=

=
∩+∩−

∩−∩+∩+∩+∩−=

=
∩+∩−

∩−+−=
∩+∩−

∪−=
−

∩−=∩=

MFPMFP
MFPMFPMFP

MFPMFP
MFPMFPMFPMFPMFP

MFPMFP
MFPMPFP

MFPMFP
FMP

FP
FMP

FP
FMP

FMP
 

 
2) 
We write given data into the table: 
 

 They passed math 
exam 

They failed to pass 
math exam 

Total 

They passed physics exam   8  
They failed to pass physics exam  5 30 35 

Total  38 120 
 

and we calculate remaining data: 
   

How much students passed physics exam? It is total number(120) minus number of students 
who failed to pass physics exam (35) and that is 85. Analogously for number of students who 
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passed math exam: 120 – 38 = 82. And for number of students who passed both exams: 82 – 5 
= 77. 
 

 They passed math exam They failed to pass 
math exam  

Total 

They passed physics exam 77 8      85 
They failed to pass physics exam 5 30 35 

Total 82 38 120 
 
Finding probabilities are: 

 

( ) ( )
120
85

;
120
77 ==∩ FPFMP , 

 
from that imply: 

 

( ) ( )
91,0

85
77

120
85

120
77

)(
≅==∩=

FP
FMP

FMP
 

 
The probability (that he passed math exam if we know that he passed physics exam) is 91%. 
 
 

      Solved example (Example of an Application of Bayes's Theorem) 
 
In a famous television game show, the winner of the preliminary round is given the 
opportunity to enhance his winnings.  The contestant is presented with three closed doors and 
told that behind one of the doors is a new automobile while behind the other two doors are 
goats.  If the contestant correctly selects the door which conceals the automobile, he will win 
the automobile. 
 
 The game show host asks the contestant to make a preliminary selection, after which 
the host opens one of the other two doors to reveal a goat.  The contestant is then given the 
option of switching his choice to the other door which remains closed.  Should he change his 
choice? 

1 2 3

 
 
Solution: 
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The sample space consists of three possible arrangements {AGG, GAG, GGA}. 
 
Assume that each of the three arrangements have the following probabilities: 
 
p1  =  P{AGG} p2  =  P{GAG} p3  =  P{GGA} 
 
where   p1  +  p2  +  p3  =  1. 
 
Assume without loss of generality that the contestant's preliminary choice is Door #1 and the 
host opens Door #3 to reveal a goat.  One the basis of this information we must revise our 
probability assessments.  It is clear that the host cannot open Door #3 if it conceals the 
automobile. 
 
 0  = GGA}  #3P{Door  
 
Also, the host must open Door #3 if Door #2 conceals the automobile since he cannot open 
Door #1, the contestant's choice. 

 
 1  = GAG}  #3P{Door  
 

Finally if the automobile is behind the contestant's first choice, Door #1, the host can choose 
to open either Door #2 or Door #3.  Suppose he chooses to open Door #3 with some 
probability q. 
 
 q  =  AGG}  #3P{Door  

 
Then by Bayes' Theorem, we can compute the revised probability that the automobile is 
behind Door #2 as 
 

#3}P{Door 
P{GAG}GAG}  #3Door {P

 = }#3Door  P{GAG 
⋅

 
 
Substituting known values into this equation we obtain, 
 

21

2

321

2

p + qp
p

  = 
)0()1()(

1
  =  #3}Door  GAG {P

pppq
p

×+×+×
×

 
 
Thus the probability that the automobile is behind Door #2 after the host has opened Door #3 
is greater than one half if, 
 
 

21 p < qp . 

 
In this case, the contestant should change his choice.  In the normal case where the original 
probabilities of the three arrangements, pi, are equal and the host chooses randomly between 
Door #2 and Door #3, the revised probability of Door #2 concealing the automobile will be 
greater than one half.  Therefore, unless the contestant has a strong a priori belief that Door #1 
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conceals the automobile, and/or believes that the host will prefer to open Door #3 before Door 
#2, he should switch his choice. 
 

  

 

 
 
As the above diagram illustrates, if the original probabilities of all three arrangements are 
equal and the host chooses randomly which door to open, then of the one half of the sample 
space covered by opening Door #3, two thirds falls in the region occupied by arrangement 
GAG.  Therefore, if the host opens Door #3, Door #2 becomes twice as likely as Door #1 to 
conceal the automobile. 
 

 

 Summary of notions 
 

Random experiment is every finite process whose result is not determined in advance by 
conditions upon whose it runs and which is at least theoretically infinitely repeatable. 
Possible results of random experiment are called elementary events. 
A set of all elementary events we call a sample space. 
Probability measure is real function defined upon subset system of the sample space which 
is non-negative normed and �-aditive. 
Conditional probability is a probability of event with conditional that some other (not 
impossible) event happened. 
A and B events are independent if intersection probability of these two events is equal to a 
product of individual event probabilities. 
Total probability theorem gives us a way how to determine probability of some event A 
while presuming that complete set of mutual disjoint events is given. 
Bayes's theorem allows us to determine conditional probabilities of individual events in this 
complete set while presuming that A event happened. 
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1. How we determine probability of two events union? 

2. How we determine probability of two events intersection?  

3. When are two events independent? 

 
 

 

 

 

 
 
Example  1: Suppose that a man and a woman each have a pack of 52 playing cards. Each draws a 
card from his/her pack. Find the probability that they each draw the ace of clubs. 
 
{Answer: independent events - 0.00037} 
 
Example  2: A glass jar contains 6 red, 5 green, 8 blue and 3 yellow marbles. If a single marble is 
chosen at random from the jar, what is the probability of choosing a red marble? a green marble? a 
blue marble? a yellow marble? 
 
{Answer: P(red)=3/11, P(green)=5/22, P(blue)=4/11, P(yellow)=3/22} 

 
Example  3: Suppose there are two bowls full of cookies. Bowl #1 has 10 chocolate chip cookies and 
30 plain cookies, while bowl #2 has 20 of each. Fred picks a bowl at random, and then picks a cookie 
at random. We may assume there is no reason to believe Fred treats one bowl differently from another, 
likewise for the cookies. The cookie turns out to be a plain one. How probable is it that Fred picked it 
out of bowl #1? 
 
{Answer: Conditional probability - 0.6} 
 
Example  4: Suppose a certain drug test is 99% accurate, that is, the test will correctly identify a drug 
user as testing positive 99% of the time, and will correctly identify a non-user as testing negative 99% 
of the time. This would seem to be a relatively accurate test, but Bayes's theorem will reveal a 
potential flaw. Let's assume a corporation decides to test its employees for opium use, and 0.5% of the 
employees use the drug. We want to know the probability that, given a positive drug test, an employee 
is actually a drug user. 
 
{Answer: Bayes's theorem - 0.3322} 

 
 

 

   Problems  
 

  Questions 
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   Study time:  80 minutes 
 

3. RANDOM VARIABLES  
 

 

 

 Explication 
 

3.1. Definition of a random variable 
Let us consider a probability space (�, S, P). A random variable X (RV) on a sample space 
� is such real function X(�) that for each real x∈  R is the set { })x  X(� ��  <∈ ∈  S, i.e. 
it is a random event. Therefore, the random variable is such function X: � � R that for each 
x∈R holds: X-1((- ∞ , x)) = { })xX(� <∈     Ωω ∈  S. From definition implies that we can 

determine a probability of x)X( <ω  for any x∈R.  

Sample space 

R 

X 

ΩΩΩΩ 

 

 

    Aim - you will be able to 

• describe the random variable by the distribution function 

• characterize a discrete and a continuous random variable  

• understand the hazard rate function 

• determine the numerical characteristics of the random variable 

• transform the random variable 
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A group of all values { }� X(� x ∈= ω),  is called sample space. 

3.2. Distribution function 
Definition:  The distribution function of a random variable X is written F(t) and, for each 
t∈R has the value: 
                                     F(t) = P{X∈  (- ∞ , t)} = P(X � t).    

        
Properties of the probability distribution function: 

1.     0 ≤ F(x) ≤ 1 for +∞<<∞− x   

2.    the distribution function is a monotonic increasing function of x, i.e.  ∀ x1, x2 ∈ R: x1 < x2 
�  F( x1 ) ≤  F( x2 )  
 
3.     the distribution function F(x) is left-continuous  
 
4. F(x)

x +∞→
lim = 1; F(x)

−∞→x
lim  = 0  

5. ∀ a, b ∈ R; a < b : P( a ≤ X < b ) = F( b ) - F( a ) 
 
6.  P( x = x0 ) = F(x)

+→ 0xx
lim  - F( x0 ) 

 

If the range of the random variable function is discrete, then the random variable is called a 
discrete random variable. Otherwise, if the range includes a complete interval on the real line, 
the random variable is continuous.  

3.3. Discrete random variable 
We speak about discrete random variable if a random variable is from some finite and 
enumerable set. The most often it is an integer random variable e.g. a number of student that 
entered the main building of VŠB TUO before midday (0,1,2,...), a number of house members 
(1,2,3,...), a number of car accidents during one day on a Prague - Brno highway (0,1,2,...), 
etc.. 
 
Definition 
We say that a random variable X has a discrete probability distribution when: 
 

1.   ∃ finite or enumerable set of real numbers M={ x1, ... , xn, ...} that    
  P( X = xi ) > 0        i = 1, 2, ... 

2.    �
i

P( X = xi ) = 1 

Function P( X = xi ) ⇔ P( xi ) is called probability function of random variable X. 
A distribution function of such distribution is a step function with steps in x1, ... , xn, .. 
For a distribution function of discrete random variable it holds:  
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F( x ) = �
<

=
xx

i
i

)xP(X  

 
    Example 
 
A throwing dice, X … a number of obtained dots                   

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
                 
 
 

3.4. Continuous random variable 

If a random variable may have any value from a certain interval we speak about a random 
variable with continuous distribution. As an example we can name a service life of a product 
(0, ∞), the length of specific object etc. In such case, we can use a density function as well as 
distribution function to describe a distribution of random variable. 

Definition  
Random variable has a continuous probability distribution when a function f(x) exists that  

( )dttf)x(F
x

�
∞−

=               pro  - ∞ < x < ∞ 

Function f(x) is called a probability density function of continuous random variable X. It is 
non-negative real function. 
We can show that in all points where a derivation of distribution function exists it holds: 
 
 

( )
dx

xdF
xf

)(=  

 
If we know a distribution function we can easily determine a probability density function vice 
versa. 

 xi  P( X = xi ) F( xi ) 
 1       1/6    0 
 2       1/6   1/6 
 3       1/6   2/6 
 4       1/6   3/6 
 5       1/6    4/6 
 6       1/6   5/6 

1

1/6 

F(x) 
    

x 1 2 3 4 5 6 

1/6 

x

P(x) 

1 2 3 4 5 6 



 58 

The area below f(x) spline for )Rb,a();b;ax ∈∈<  in any interval is the probability that X will 
gain the value of this interval. It also fully corresponds with our density definition. 

P(a ≤ X < b ) = F( b ) - F( a ) = f t dt f t dt
b a

( ) ( )
−∞ −∞
� �−  = f t dt

a

b

( )�  

 

a b 

P(a � X < b) f(x) 

x 
 

One of attributes for each density probability is the fact that the whole area under curve is 
equal to one. It is analogical to a discrete random variable where the sum of probabilities for 
all possible results is also equal to one.  We can describe this attribute by the following 
equation:  

f x dx( )
−∞

∞

�  = 1 

 

Example 

Logistic probability distribution has a following distribution function F(x) and a probability 
density  f(x): 

 

x)�-(�+e
 F( x ) 

101
1

 = +
                                        

2
1

10

10

1  ) + e( 
 e�

  f ( x )  x)�-(�

x)�-(�

+

+

=  
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0 

0.25 

0.5 

0.75 

1 

-4 -3 -2 -1 0 1 2 3 4 

F(x) 

 
 
 
 
 

0 

0.1 

0.2 

0.3 

0.4 

-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 

f(x) 

 
 

3.5. Failure rate 
Let X be a non-negative random variable with continuous distribution. Then, we define a 
failure rate for F(t) < 1 

 

( ) ( )
( )tF

tf
t

−
=

1
λ . 
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We can easily derive the following formula: 

 

( ) =tλ
+→∆ 0

lim
t

( )
=

>+≤<
t

tXttXtP
∆

∆ ( )
( )tF

tf
−1

 

 

Let X be a mean time to failure of any system. Then, the failure rate expresses that if in the t-
time there was no failure the probability of failure in a small following time t∆  is 
approximately ( )λ t t.∆ : 

 

( )tXttXtP >+≤< ∆  � 
( )

( ) t
tF

tf ∆
−1

 = ( )λ t t.∆  

 

The failure rate characterizes the probability distribution of non-negative random variable. 

Table 1 shows the mutual conversions between )(),(),( ttFtf λ : 

 

 F(t) f(t) ( )λ t  
 

F(t) 
 

F(t) ( )f x dx
t

0
�  ( )1

0

− −
�

�
�
�

�

�
	
	

�exp λ x dx
t

 

 
f(t) 

( )dF t
dt

 
 

f(t) ( ) ( ) 	
�

�
�
�

�
−⋅ �

t

dxxt
0

exp λλ  

 
( )λ t  

( )

( )

dF t
dt
F t1−

 

( )

( )

f t

f x dx
t

1
0

− �
 

 
( )λ t  

Table 1 

 

• The most often graphical interpretation of failure rate 

Let a random variable X be a mean time to failure of any system. Then, a typical form of 
failure rate is shown in the following figure. The curve in this figure is called the bathtub curve.  
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 ( )tλ  

t 
 

I … The first part is a decreasing failure rate, known as early failures or infant mortality. 
II … The second part is a constant failure rate, known as random failures. 

III … The third part is an increasing failure rate, known as wear-out failures. 

 

3.6. Numerical characteristics of random variable  
The probability distribution of each random variable X is fully described by its distribution 
function F(x). In many cases we can summarize the total information to several numbers.  
These numbers are called the numerical characteristics of the random variable X. 
 

1. Moments  
       r-th  general moment  is denoted    µr' = EXr             r = 0,1,2, … 
           

            discrete RV:          µr'= 
i
�  xi

r . P( xi )      

  

            continuous RV:         µr' = 
−∞

∞

�  xr. f( x ) dx            r = 0,1,2, … 

   
if stated progression or integral tend absolutely. 
  
 r-th central moment           is denoted    µr  = E[ X - EX ]r     r = 0,1,2, … 

               discrete RV:     µr  =  
i
�  [ xi - EX ]r . P( xi )     

     continuous RV:  µr  = 
−∞

∞

�  ( x - EX )r . f( x ) dx     
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if stated progression or integral tend absolutely. 
             

                           
2.   Expected value (mean)        EX = µ1' 

 discrete RV:             EX = 
i
� xi . P( X = xi )           

 continuous RV:        EX = 
−∞

∞

� x. f( x )dx      

  
  Properties:  

1.  E(aX + b ) = a. EX + b   Rb,a ∈  
2.  E( X1 + X2 ) = EX1 + EX2 
3.  X1, X2 ... independent RV � E( X1. X2 ) = EX1 . EX2 
4.  Y = g( X ); g( X ) is a continuous function: EY = E( g( X ))  

                                  Y is a continuous RV:     EY = �
∞

∞−

 x) dxg( x ). f(  

                                  Y is a discrete RV:  EY = � ) =
i

ii x) . P( Xg( x    

 
3.  Variance                DX = µ2 = E( X - EX )2 = EX2 - ( EX )2 
 

 discrete RV:          DX =  �
i

xi
2.P( xi ) - (�

i

xi. P( xi ) )2                                                         

 continuous RV:     DX = 
−∞

∞

� x2. f( x )dx -  (
−∞

∞

� x. f( x )dx ) 2   

    
 Properties::  

1. D( aX + b ) = a2. DX 
2. X1, X2 ... independent � D( X1 + X2 ) = DX1 + DX2 

 
 
4.  Standard deviation   σx = DX  
 
 
5.  Skewness  a3 = µ3 / σx

3 

Is a level of symmetry for the given probability distribution and it is hold:  
        a3 = 0 … symmetrical distribution 
        a3 < 0 .... negative skewed set  
        a3 > 0 .... positive skewed set  
 
 
6.  Kurtosis a4 = µ4 /σx

4 

Is a level of kurtosis (flatness): 
      a4 = 3 .... normal kurtosis (i.e. kurtosis of a normal distribution) 
      a4 < 3 .... lower kurtosis than normal distribution one  (flatter) 
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      a4 > 3 .... greater kurtosis than normal distribution one (sharper) 
 
 
7.  Quantiles 
     )1,0(∈p   
      xp ... 100p% quantile       xp = sup{xF(x) ≤ p} 
       
      continuous RV:  F( xp ) = p 
       
Special types of the quantiles: 
 

x0,5… 50% quantile is called a median 
x0,25  and  x0,75… 25% quantile is called a lower quartile and 75% quantile is called an  
           upper quartile 
xk/10  … k =1,2,… 9  the k-th decile 
xk/100  … k =1,2,… 99  the k-th percentile 
 
8.  Mode 
The mode x̂  of a discrete RV X is such value that holds: 
 

P( X = x̂  ) �  P( X = xi )        i = 1, 2, ... 
 

     It means that the mode is a value in which the discrete RV comes with the biggest  
     probability. 

 
The mode x̂  of a continuous RV X is such value that holds: 

)()ˆ( xfxf ≥                    pro  - ∞ < x < ∞ 

It is a value where the probability density has a maximum value.  
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   Study time:  60 minutes 
 

4.  RANDOM VECTOR  
 

 

 
 

 Explication 
 

4.1.  Random vector  
 For continuous random variables, the joint distribution can be represented either in the 
form of a distribution function or of a probability density function. 
 

( )nn221121  x X ,..., x X , x X  P  =  ),..., x, x( <<<nxF ,  F: Rn � R 
 

n21

n21
n21  x... x  x

)x,..., x, x( F 
  =  ) x,..., x, x( 

∂∂∂
∂ n

f  

 
The two forms are again equivalent.  In terms of the joint probability density function, the 
joint distribution function of X1,...,Xn is 
 

( ) ....,...,,...),...,,( 212121

12

nn

xxx

n dtdtdttttfxxxF
n

���
∞−∞−∞−

=  

 
Although in theory the joint distribution of a discrete variable with a continuous variable does 
exist, there is no practical algebraic formulation of such a distribution.  Such distributions are 
only represented in conditional form. 

 

4.2. Marginal distribution 
Definition 

Let X = (X1, X2,... , Xn ) be a random vector. The random vector Y =  )X,X(X
kiii ,,

21
… , where 

k < n, ,vuproii},n,...,,{i vuj ≠≠∈ 21  we called the marginal random vector. Especially, 

    Aim - you will be able to 

• describe a random vector and its joint distribution  

• explain the notions of marginal and conditional probability distribution 

• explain a stochastic independence of random variables 
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Xi is the marginal random variable for every i=1,2,…,n. The probability distribution of Y 
we called the marginal probability distribution. 
 
Let X = (X1, X2 ) be a bivariate random variable with given distribution function F(x1, x2).  

 
),(),(lim)( 12111

2

+∞==
+∞→

xFxxFxF
x

…marginal distribution function of random variable X1 

 
),(),(lim)( 22122

1

xFxxFxF
x

+∞==
+∞→

…marginal distribution function of random variable X2 

For continuous random variables, the marginal probability density of one jointly distributed 
variable is found by integrating the joint density function with respect the other variable. 
 

�=
2

22111 ),()(
x

dxxxfxf  for  X1   

�=
1

12122 ),()(
x

dxxxfxf  for X2  . 

 
For discrete random variables, the marginal distributions are given by: 

� ===
2

),()( 221111
x

xXxXPxP … marginal distribution function of  X1 

� ===
1

),()( 221122
x

xXxXPxP  … marginal distribution function of  X2 

 

4.3. Conditional distribution 
The conditional distribution is the distribution of one variable at a fixed value of the other 
jointly distributed random variable. For two discrete variables, the conditional distribution is 
given by the ratio of the joint probabilities to the corresponding marginal probability. 
 

p( x1 | x2 ) = P (X1=x1 | X2=x2) = 
( )

)(
,

)(
),(

22

21

22

2211

xP
xxp

xP
xXxXP

=
==

  . 

 
For continuous random variables, the conditional densities are given analogously by the ratio 
of the joint density to the corresponding marginal density.   
 

f(x1|x2) = 
)x(f
)x,x(f

22

21 . 

�
+∞

∞−

= 12122 dx)x,x(f)x(f is the corresponding marginal density of X2. 

 

 4.4. Independence of Random Variables 
Definition 

X1 … Xn are mutually independent ⇔  the random events {Xi < xi} , (i=1,2,…,n , where  xi ∈ 
R) are mutually independent. 
 
Therefore, X1 … Xn are mutually independent ⇔  F(x1,…,xn) = F1(x1) .…. Fn(xn). 
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It is true, because  
 F(x1,…,xn) = P(X1<x1, … , Xn<xn) = P(X1< x1) . P(X2<x2) .…. P(Xn<xn) = F1(x1) . F2(x2) .…. 
Fn(xn).  
 
This implies the following rule:: 
 X1 … Xn are mutually independent ⇔  f(x1,…,xn) = f1(x1) . …. fn(xn). 
          
  Example: 
X1, X2 are mutually independent. Determine the variance 21 + XX . 
 
In general, if X1 and X2 are not independent, the variance of their sum is given by 
 

)(2)()( )( 212121   , X X Cov     X + D   XD   =   + X XD +  
 

where the covariance of X1 and X2  is defined by  
 

 ) ) ] - E ( X ) ) ( X - E ( X( X ) =  E [  , X( XCov 221121  
 

When  X1 and X2 are independent, the covariance is zero. 
An alternate expression for the covariance similar to that for the variance and simpler for 
computation is 
 

).()(  )(   ) ,( 212121 XEXEXXEXXCov −=  

 

Correlation coefficient 

The correlation coefficient measures the strength of the relation between two random 
variables, X1 and X2. The correlation coefficient is defined by 
 

.    
21

21

21

XX
XX

��

) , XCov ( X
=ρ

 

  
The correlation coefficient properties are: 
1. -1 � � � 1  

2. ( X ,Y ) (Y , X )ρ ρ=  
  

The correlation assumes values between -1 and 1. A value close to 1 implies a strong positive 
relationship, a value close to -1 implies a strong negative relationship, and a value close to 
zero implies little or no relationship. 

 
 

      Solved example 
 
Imagine that we will repeat the trial for three times (we known the success probability, e.g. 
coin throws). 
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Lets write all possible combinations: (S - success, F - false): 
 
      { FFF; SFS; SSF; FSS; FSF; FFS; SFF; SSS } 
 
       Now we specify the following random variables:  
 
          Y ... a number of attempts to the first success 
       Z ... a number of the following successes 
 

a) determine the probability function P( Y ), P( Z ) 
b) set the joint probability function Y, Z 
c) determine the marginal distribution function and  P( Y | Z ), P( Z | Y ) 

 
Solution: 
ada)  Y and Z are the discrete RV and that is why Y and Z can gain the values: 0, 1, 2, 3 
       Let's name all element events of the sample space: 
 
            A1 ... FFF                P( A1 ) = ( 1 - p )3 
                     A2 ... SFS                P( A2 ) = p2.( 1 - p ) 

             A3 ... SSF                P( A3 ) = p2.( 1 - p ) 
                        A4 ... FSS                P( A4 ) = p2.( 1 - p ) 
                       A5 ... FSF                P( A5 ) = p.( 1 - p )2 
                       A6 ... FFS                P( A6 ) = p.( 1 - p )2 
             A7 ... SFF                P( A7 ) = p.( 1 - p )2 
             A8 ... SSS                P( A8 ) = p3 

 

For our calculation we use the fact that the F and S variables are independent.  
      

                   Y  ... a number of attempts to first success  
                 0   1     2      3 
 SFS, SSF, SFF, SSS       FSS, FSF     FFS     FFF 

 
 

                   Z  ... a number of following successes     
        0                     1             2           3 
     FFF   SFS, FSF, FFS, SFF     SSF,FSS       SSS 

 
Since A1, ... , A8 events are disjoint we can simply determine the probablity function (p=0.5).  
 

            Y  ... a number of attempts to first success    
     P(Y= 0 )   P(Y= 1 )      P( Y= 2 )           P(Y= 3 )        
         0.5      0.25        0.125     0.125 

 
            Z ... a number of following successes    
     P( Z = 0)   P(Z = 1)      P(Z = 2)           P(Z = 3)        
         0.125      0.5        0.25     0.125 

 
 

adb) we will proceed in the same way like we did in probability function finding 
                                                         Z 
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 Y        0         1        2        3 
 0        -   SFS, SFF   SSF   SSS 
 1        -       FSF   FSS        - 
 2        -       FFS        -        -  
 3     FFF          -        -        - 

     
                                                                 Z                                                           

 Y 0 1 2 3 
 0   0      0.25    0.125     0.125 
 1   0     0.125   0.125     0 
 2   0     0.125     0     0  
 3   0.125     0     0      0 

 
 
adc) marginal probability functions - P( Y ), P( Z ) 

 
                                                                           Z 
 Y 0 1 2 3   P( Y ) 
 0   0       0.25     0.125     0.125    0.5 
 1   0      0.125    0.125     0    0.25 
 2   0      0.125     0     0     0.125 
 3   0.125        0     0      0              0.125 
 P( Z)   0.125        0.5     0.25      0.125                1 
 
 
           P( Y |  Z ) = P( Y ∧ Z ) / P( Z ) 
                                                          Z           
 Y        0         1        2        3 
 0        0        0.5       0.5         1 
 1        0      0.25       0.5         0 
 2        0      0.25       0         0 
 3        1         0       0         0 
 
 
         P( Z | Y ) = P( Y ∧ Z ) / P( Y ) 
 
                                                            Z           
 Y        0         1        2        3 
 0        0        0.5     0.25     0.25 
 1        0        0.5       0.5         0 
 2        0        1       0         0 
 3        1         0       0         0 
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 Summary of notions 
 
Random variable X is a real function which can be characterized by a distribution 

function F(t).  
Distribution function is a function that assigns to each rea number a probability that the 

random variable will be less then this real number. Distribution function has some general 
properties like ∀ a, b ∈ R; a < b platí P( a ≤ X < b ) = F( b ) - F( a ). 

According values the random variable may become we distinguish continuous and 
discrete variable.          
     The discrete random variable is also characterized by a probability function, the 
continuous one by a density function. 

     In many cases, it is useful to cover the whole information about random variable into 
several numbers that characterize some properties of random variable while allowing the 
comparison of different random variables. These numbers are called the numerical 
characteristics of random variable. 

   A random vector is a vector consisted of random variables X = (X1, X2, …, Xn ) that is 
characterized by joint distribution function.   
   From joint distribution function of random vector we can easily determine a marginal 
probability distribution of particular random variables the vector is composed of. 
 
 

 
 

 

 

1. What is a mutual relationship between a distribution function and probability function of 
discrete random variable? 

2. What is a mutual relationship between a distribution function and probability density 
function of continuous random variable? 

3. What is a median and a mode? 

4. Explain term of conditional probability distribution.  

5. Explain term of stochastic independence of random variables.  

6. What does a value of correlation coefficient tell us? 
 
 
 
 
 
 
 
 
 
 
 

  Questions 
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Example  1: Let Y be a continuous variable defined by a probability density function: 

 
       f( y ) =  c. ( 1 + y ).( 1 - y );            -1 < y < 1 
               0                                         elsewhere 
 

Find a constant c, a distribution function, an expected value and a variance of this variable. 
                     

{Answer: c=0.75; F(y) = 0.25 (3y - y3+2); EY = 0; DY = 0.2} 
 
Example  2: Let random variable W is defined as a linear transformation of random variable Y, 
defined in previous example. 

    W = 5Y + 6 
 
Find a probability density function, a distribution function, an expected value and a variance 

of random variable W.  

{Answer: f(w) = -
3

500
 (w2-12w+11); F(w) = 0.25 [3(

w − 6
5

) - (
w − 6

5
)3 +2]; EW = 6; DW = 5} 

 

Example  3: Let random variable Z be defined as: 

    f( z ) = 1 / [ ( 1 + ez). ( 1 + e-z ) ];                         -∞ < z < ∞ 
 
 Find a distribution function of random variable Z. 

{Answer: F(z) = 
e

e

z

z1+
} 

 

 

 
 

   Problems  
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   Study time:  50 minutes 
 

5. SOME IMPORTANT PROBABILITY DISTRIBUTIONS  
 

5.1. Discrete Probability Distributions 
 

 

 
 

 Explication 

 

A lot of discrete random variables exist and now we summarize basic information about the 
most common discrete variables. 
Bernoulli trials: 

• a sequence of Bernoulli trials is defined as a sequence of random events which are 
mutually independent and which have only two possible outcomes (e.g. success-
nonsuccess, 1-0) 

• probability of event occurrence (a success) p is constant in any trial 
 

p=} Success"" = i'' {Trial P  
 
Binomial random variable: 
 
The most natural random variable to define on the sample space of Bernoulli trials is the 
number of successes.  Such a random variable is called a binomial random variable.  If X is 
the number of successes in n Bernoulli trials where the probability of success at each trial is p, 
then we represent the distribution of X by the short-hand notation: 
 

),(     pnBX →  
 

where B indicates that X has a binomial distribution and n and p are the parameters 
determining which particular distribution from the binomial family applies to X.  
 

    Aim  -  you will be able to 

• characterize Bernoulli trials and types of discrete distributions  

• characterize Poisson process and Poisson distribution 

•  describe contexture in between discrete distributions 
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The probability distribution of a binomial random variable can be expressed algebraically as: 
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DX = EX2 – (EX)2 = n.p.(1 - p)  
 
Notice that the variance of the binomial distribution is maximum when p = 0.5.  
 

 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0 0.25 0.5 0.75 1 p 

p(1-p) Maximum 

 
 
Example:  

Some examples of binomial distributions for n = 14 trials are illustrated below.  Notice 
that as p, the probability of success at each trial increases, the location of the 
distribution shifts to higher values of the random variable.  Also notice that when p = 
0.5, the distribution is symmetric around 7.5. 
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           )( kXP =  
 
 
 
 
 
 
 
 
 
 
 
 
                        
                                                                                                                             k 
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Geometric distribution: 
 
This distribution has a single parameter, p, and we denote the family of geometric 
distributions by 

)(     pGX →  

 
G(p) … the geometric random variable is defined as the number of trials until a success occurs 
or until the first success 
 
The probability distribution for a geometric random variable is: 
 

∞<≤−== − kppkXP k 1;)1( )( 1  

 
The expression for the mean of the geometric distribution is 
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Note: By first evaluating the series and then taking its derivative the result is obtained. 
 
         The mean number of Bernoulli trials until the first success is the inverse of the success 
probability at each trial, again an entirely intuitive result.  That is, if 10% of the trials are successful, 
on average it will take ten trials to obtain a success. 

 
To find the variance, we first evaluate the expected value of X2 and then modify the 
expression using the same technique as for the binomial case.  We note that the expression 
now has the form of the second derivative of the same geometric series we evaluated for the 
mean.  Taking derivatives of this evaluated expression, we obtain 
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From the mean and expected value of X2 we can derive the variance. 
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Example: 

Some examples of geometric distributions are illustrated below.  Not surprisingly, the 
probability of long sequences without success decreases rapidly as the success 
probability, p, increases. 
 

         )( kXP =  
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Negative binomial random variable 
 
The negative binomial distribution has two parameters, k and p and is denoted by 
 

) ,(     pkNBX →  
 
The negative binomial is the number of Bernoulli trials until the kth success. 
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The negative binomial distribution is: 
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The mean and variance of the negative binomial distribution can be computed easily by 
noting that a negative binomial random variable with parameters k and p is just the sum of k 
independent geometric random variables with parameter p.  Independence the geometric 
random variables follow from the independence assumption of sequences of Bernoulli trials.  
Thus if 
    

kipGWi ≤≤→ 1 ; )(      
 
 then 

   

2
1

1

1

)1( 
)( )(

)( )( 

p
pk

WDXD

p
k

WEXE

WX

k

i
i

k

i
i

k

i
i

−==

==

=

�

�

�

=

=

=
 

 
Example: 
 The following chart illustrates some examples of negative binomial distributions for 

k=3.  Notice that for values of p near 0.5, the distribution has a single mode near 5.  This 
mode moves away from the origin and diminishes in magnitude as p decreases 
indicating an increase in variance for small p.  The negative binomial distribution has a 
shape similar to the geometric distribution for large values of p. 
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Note:  
Comparison of Binomial and Negative Binomial Distributions 
 
It is interesting to compare the distributions of binomial and negative binomial random 
variables.  Notice that except for the combinatorial term at the beginning of each 
distributional expression, the portion contributed by the probability of single sample space 
elements is identically pk (1 - p)n-k. 
 
  Binomial distribution 
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For the binomial, the number of trials (n) is fixed and the number of successes (k) is variable. 
 
 
  Negative binomial distribution 
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For the negative binomial, the number of successes (k) is fixed and the number of trials (n) is 
variable. 
 
 
Poisson process 
      The Poisson process is a second general type of sample space model which is widely 
applied in practice.  The Poisson process may be viewed as the continuous time generalization 
of a sequence of Bernoulli trials, sometimes called the Bernoulli process.  The Poisson 
process describes the sample space of randomly occurring events in some time interval.  The 
Poisson process assumes that the rate at which events occur is constant throughout the 
interval or region of observation and those events occur independently of each other.   
λ … lambda → the rate at events occur  
 

However, events occurring over some region can also be modeled by a Poisson process.  The 
appearance of defects in some product, or mold on the surface of a leaf under certain 
conditions could follow a Poisson process. 
  
Examples: 

• Customers arriving at a bank to transact business.  
• patients arriving at a clinic for treatment  
• telephone inquiries received by a government office, etc. 
 

Some examples of elements of the sample space for a Poisson process are illustrated below.  
This is a complex difficult to characterize sample space.  The number of elements in the 
sample space is uncountable infinite and in this sense continuous.  Probabilities cannot be 
assigned to individual elements of this sample space, only to subsets. 
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Time of Occurrence

Sample #1

Sample #2

Sample #3

 
The Poisson process describes events which occur randomly over some time interval or 
spatial region. 
 
 

Poisson distribution   
 

The Poisson distribution has a single parameter and therefore we denote this random variable 
by the symbolic notation, 

( )tPX λ    →  

Consider a Poisson process that is observed for a time period t.  Suppose the rate of 
occurrence of events is λ during the time period.  Then the total rate of occurrence over the 
entire observation interval is λt.  Now divide the interval t into n subintervals of equal length 
t/n.  Occurrence of events in each of these intervals will be mutually independent at constant 
rate λt/n.  If n becomes large enough, the interval lengths, t/n, will become small enough that 
the probability of two events in one interval is effectively zero and the probability of one 
event is proportional to λt/n.  Then the distribution of the number of events in the total 
interval t can be approximated by the distribution of a binomial random variable with 
parameters n and λt/n.  Thus, 
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 Taking the limit as n goes to infinity, this expression becomes 
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We can express the distribution of a Poisson random variable as:  
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Calculation of mean:   
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The expected value of X2 is found using the Taylor series expansion of the exponential 
function as well as the same algebraic manipulation as was invoked for Bernoulli random 
variables. 
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 From this result, the variance follows directly. 
 
 t)))X(EX(E)X(D λ (X)) (E  (X E ] [ 222 =−=−=  
 
 We notice that the Poisson distribution has the remarkable property that the variance is equal 

to the mean and by implication that the variance of the Poisson random variable will increase 
as the rate λ increases. 

 
 Example: 

Some examples of Poisson distributions are illustrated below.  Notice that at the value λ = 9, 
the distribution becomes almost symmetric. 
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   Study time:  50 minutes 
 

5.2. Continuous Probability Distributions 
 

 

 
 

 Explication 

• How does a basic description for exponential, gamma and Weibull distributions look 
like? 

 
 

Exponential Distribution 
 
The exponential random variable is a second very natural variable which can be defined on 
the sample space generated by a Poisson process.  If a continuous time process satisfies the 
assumptions of a Poisson process, the time between events, or equivalently because of the 
assumption of independence, the time until the next event will have an exponential 
distribution.  The exponential random variable is analogous to the geometric random variable 
defined for a Bernoulli process. 
 
The range of possible values for the exponential random variable is the set of non-negative 
numbers. 
 

Time of Occurrence

T = Time Between Events

T has an Exponential Distribution
 

 

   Aim  -  you should be able to 

• characterize types of continuous distributions :  exponential, Gamma 
and Weibull 

•  describe contexture in between continuous distributions 
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Strictly speaking, the sample space for an exponential random variable consists of intervals of 
varying length terminated by a single event, just as the sample space of the geometric random 
variable consists of a sequence of failures terminated by a success. 
 
The probability density function and distribution function of an exponential distribution have 
the following simple form. 

0;)( ≥= − tetf tλλ  
 

F(t)=P(T < t) = P(Nt ≥ 1) = 1 – P(Nt < 1)
te λ−−= 1
 

 
where λ is the rate at which events occur.  The family of exponential random variables is 
identified by the single parameter, λ, the same parameter which defines the Poisson 
distribution. 
 

)(     λET →  
 
The mean of the exponential distribution is the reciprocal of the rate parameter.  The result 
can be obtained through integrating the expected value integral by parts. 

λ
λ λ 1

  )( 
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== �
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−

t

t dtetTE
 

 
The variance of the exponential distribution is obtained from evaluating the following integral 
again through integration by parts. 

2
22 1

...)(
λ

==−= ETETDT  

 
The variance equals the square of the mean and therefore the mean equals the standard 
deviation for an exponential distribution. 
 
The hazard function is given by: 
 

)(1
)(

)(
tF

tf
th

−
=    if  F(t) < 1 

 
h(t) = λ = const. 	  the "no memory" property of the exponential distribution 

 
Example: 

 The following graph illustrates some examples of the probability density functions of 
exponential random variables.  Notice that the shape of the exponential density is similar to 
the shape of the geometric probability distribution.  The exponential distribution of time to 
next event is the continuous time equivalent of the geometric distribution which is the number 
of trials to next event where event may be considered a "successful" trial. 
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Gamma distribution                                   
 

),(     λkGaT →  
 

The sample space generated by the Poisson process gives rise to a second random variable 
closely associated with the exponential random variable.  The total time until some specified 
number of events, say k, occur is called a Gamma random variable and arises as a sum of k 
identical independent exponential random variables.  If the exponential distribution is the 
continuous time equivalent of the geometric, then it follows that the Gamma distribution is the 
continuous time equivalent of the negative binomial. 
 

Time of Occurrence

T = Time Until 4th Event

T has a Gamma Distribution

0 1 2 3 4 5

 
 

The sample of a gamma random variable arising as the sum of 4 independent exponential 
random variables, that is as the time until the fourth event in a Poisson process will consist of 
intervals of varying length, all having three events and terminated by a fourth event. 
 
The gamma distribution function for any integer value of k can be derived by the following 
argument.  Since the gamma arises as the sum of k independent, identically distributed 
exponential random variables, the distribution function of the gamma is the probability that 
the sum of k exponentials is less than or equal to some value t.  This implies that there have 
been at least k occurrences of a Poisson process within time t, the probability of which is 
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given by the cumulative distribution of a Poisson random variable with rate parameter λt, 
where λ is the rate of the underlying Poisson process. 
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and the probability density function is 
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 Since the gamma random variable is the sum of k identical independent exponential random 
variables, the mean and variance will be k times the mean and variance of an exponential 
random variable.  This same argument was used to derive the mean and variance of the 
negative binomial from the moments of the geometric distribution. 
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The form of the gamma distribution presented here where the parameter k is restricted to be a 
positive integer is actually a special case of the more general family of gamma distributions 
where k is a shape parameter which need only be a positive real number.  The special case we 
have discussed is sometimes called the Erlang distribution. 
 
Example: 
Examples of gamma probability density functions for λ = 1 are illustrated in the following 
chart.  Notice that the gamma density has a single mode which moves away from the origin as 
k increases.  Also the dispersion increases and the distribution becomes more symmetric and k 
increases. 
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The hazard function is given by: 
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     The hazard function of Gamma distribution, �=1 
 

h(x) is a sharply increasing function for k > 1 	 this distribution is suitable for modeling of ageing 
and wear processes 

 
 
Weibull distribution   

The distribution function is: 
β

�
�

�
�
�

�

Θ
−

−=
x

exF 1)(  ,    Θ > 0, β > 0, x > 0    β ... a shape parameter, Θ ... a scale parameter. 
 
The probability density function for the Weibull is:   
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And the hazard function for the Weibull is:          
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Some examples of the Weibull density and the Weibull hazard function are illustrated below. 
 

 

 
 
The Weibull distribution is very flexible and we use it in Reliability theory for modeling of the 
random variable "time to failure".  
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 Summary of notions 
 

A sequence of Bernoulli trials is defined as a sequence of random events which are mutually 
independent and which have only two possible outcomes (e.g. success-nonsuccess, 1-0) and 
the probability of event occur (a success) p is constant in any trial.  
On the basis of these trials expectations we can define the following random variables: 
binomial, geometric and negative binomial.  
A number of events occurrences on any deterministic interval from 0 to t can be describe (at 
certain expectations) by a Poisson distribution.  
If a continuous time process satisfies the assumptions of a Poisson process, the time between 
events, or equivalently because of the assumption of independence, the time until the next 
event will have an Exponential distribution. 
A Gamma distribution describes a time to k-th event occurrence.   
A Weibull distribution is generalization of the exponential distribution and it is very 
flexible.  
 

 
 

 

1. Which discrete and continuous distributions you know? 

2. Characterize the Bernoulli trials and individual types of the discrete distributions. Determine a 
mean of the Binomial random variable. 

3. What is Gamma distribution used for? How is it related  to Exponential distribution? 

4. For what β of Weibull distribution is the hazard function linear increasing? 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Questions 
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Diagram:  a contexture among distributions 
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Example  1: Suppose that a coin with probability of heads p = 0.4 is tossed 5 times. Let X denote the 
number of heads.  

a)  Compute the density function of X explicitly. 
b)  Identify the mode. 
c)  Find P(X > 3). 

 {Answer: Let f(k) = P(X = k) = ��
�

�
��
�

�

k

5
(0.4)k (0.6)5 - k for k = 0, 1, 2, 3, 4, 5. 

a) f(0) = 0.0778, f(1) = 0.2592, f(2) = 0.3456, f(3) = 0.2304, f(4) = 0.0768, f(5) = 0.0102. 
b) mode: k = 2 
c) P(X > 3) = 0.9870. } 

Example  2: Suppose that the number of misprints N on a web page has the Poisson distribution with 
parameter 2.5.  

a)  Find the mode. 
b)  Find P(N > 4). 

{Answer: a) mode: n = 2, b)P(N > 4) = 0.1088} 

Example  3: Message arrive at a computer at an average rate of 15 messages/second. The number of 
messages that arrive in 1 second is known to be a Poisson random variable. 

a) Find the probability that no messages arrive in 1 second. 
b) Find the probability that more than 10 messages arrive in a 1-second period. 

 
{Answer: a) )10(06.3 7− , b) 8815.0 } 
 

Example  4: If there are 500 customers per eight-hour day in a check-out lane, what is the probability 
that there will be exactly 3 in line during any five-minute period? 

 
{Answer: Poisson - 0.1288 } 
                                                                                                                                            

  
 

   Problems  
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   Study time:  60 minutes 
 

6. THE NORMAL DISTRIBUTION AND THE LIMIT THEOREMS  
 

 

 
 

 Explication 

 

6.1. Normal Distribution 
Astronomers were responsible for one of the earliest attempts to formally model the random 
variation inherent in the measurement process.  The probability density function which was 
adopted at that time has been alternatively called the error function, the Gaussian curve, and 
today most commonly, the normal distribution.  The normal distribution is the most widely 
used model of random variation.  Its popularity is partly based on its intuitive appeal as a 
simple mathematical model of our instinctual notions of what constitutes random variation.  
However, there is also sound theoretical support for the belief that the normal distribution 
frequently occurs in practice. 
 
The form of the normal density model is a simple symmetric bell-shaped curve with a single 
mode.  This shape is achieved by the use of a negative exponential function whose argument 
is the square of the distance from the mode.  Since squared distance makes values near zero 
smaller, the normal curve has a smooth rounded shape in the region of its mode.  The normal 
density has two parameters, µ , its mode and the point about which the density is symmetric, 
and �, a scale or dispersion parameter which determines the concentration of the density about 
the mode and the rate of decrease of the density towards the tails of the distribution.  The 
family of normally distributed random variables is denoted by 
 

),(    2σµNX →  

The probability density of the random variable X with the normal 
distribution: ),(    2σµNX →   

    Aim -  you will be able to 

• characterize the normal and the standard normal distribution 

• formulate and use the limit theorems 

• describe special distributions  
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pro - ∞ < µ < ∞ ,      σ2 > 0  

This density is symmetric about µ and therefore the mean, median, and mode are all equal to 
µ.  Also due to the symmetric bell shape of this density, the interquartile range equals the 
Shorth which is twice the MAD. 
 
The following charts illustrate the distribution of probabilities for a normal random variable.  
The first chart shows that the probability of being between 0 and 1 standard deviation (�) 
above the mean (µ) is 0.3413 or approximately one-third.  Since the distribution is symmetric, 
the probability of being between 0 and 1 standard deviation (�) below the mean (µ) is also 
approximately one third.  Therefore the probability of being more than one standard deviation 
from the mean in either direction is again one third. 
 
                )(xf  
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                                  x 
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Conversely, the upper and lower quartiles are two thirds of a standard deviation above and 
below the mean.  Thus µ �+/- 0.67 � divides the probability of the distribution into four equal 
parts of 25%. 
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The mean and variance of a normal random variable are equal to its location parameter µ, and 
the square of its scale parameter �2, respectively. 
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The distribution function of the normal distribution: 
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Standard normal distribution 

A normal random variable with location parameter 0 and scale parameter 1 is called a 
standard normal random variable.  Because of the form of the normal density, it is possible to 
determine probabilities for any normal random variable from the distribution function of the 
standard normal variable.  Consequently, the standard normal random variable has been given 
the special symbolic destination, Z, from which the z-score derives.  The standard normal 
distribution function is given the special symbol, �. 

Then, 
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where �(z) is the standard normal density 
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Standardization - relation between normal and standard normal distribution 
 
Therefore if X is any normal random variable N(µ, σ2) we can define a related standard 

normal random variable Z = 
X − µ

σ
 and it has the standard normal distribution. 

                          X ... N(µ, σ2)   �  Z = 
X − µ

σ
   , Z ... Φ( 0, 1 )  

 
The distribution function of X can therefore be computed from the derived random variable Z 
which has a standard normal distribution: 
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      Solved example 

X ... N( 2, 25 ), determine P( 2 < X < 8 )     

Solution:       

P( 2 < X < 8 ) = F( 8 ) - F( 2 ) = Φ( 
8 2

25

−
 ) - Φ( 

2 2

25

−
 ) = Φ( 1.2 ) - Φ( 0 ) = 0.885 - 0.5 = 0.385 
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In the tables or by suitable software we can find: Φ( 1.2 ) = 0.885, Φ( 0 ) = 0.5 
 
Example:  

The following chart illustrates the normal density with zero mean for selected values of σ.  It 
is clear that the mean, median, and mode of a normal random variable are all equal, and the 
two parameters of the normal distribution are the embodiment of our intuitive notions about 
the general distributional characteristics of location and scale. 
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6.2. Limit Theorems  
Definitions of the basic notions 

 Convergence in probability:  
               1)(lim =<−

∞→
εXXP nn

    � Xn p →  X;  i.e. a sequence of random variables {Xn} 

converges in probability to random variable X                       
 
Convergence in distribution: 
{Fn(x)} ... is a sequence of distribution functions corresponding to random variables {Xn} 
  
The sequence {Xn} converges towards X in distribution, if:  
 

( )lim
n nF x

→∞
= F(x), 

 
for every real number x at which F is continuous. 
 
Consequence:   
The sequence {Xn} converges in distribution to distribution N(µ, σ2), i.e. the random variable 

Xn has asymptotical normal distribution if lim ( )
n nF x

→∞
= )

�

�x
�(

−
. 
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Limit theorems 
 

Chebyshev's inequality: 

X ... is an arbitrary random variable with mean  EX and variance DX.  
Then 

 

P( 	X - EX 	≥  ε ) ≤ DX
ε 2

,        ε > 0 

 
This relation results from the variance definition: 
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Using of the Chebyshev's inequality (for calculation probabilities): 
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e.g. we can apply it to XX =  with respect to following limit theorems: 
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Law of large numbers:   

{Xn} ... is a sequence of independent random variables, each having a mean EXn =� and a 
variance DXn  =�2 .        
 
Define a new variable                           
   

nX   �
=

=
n

j
jX

n 1

.
1

,       n ∈ N 

 
The sequence { nX  } converges in probability to �: nX p → �. 
 
Notion: This affirmation results from the Chebyshev's inequality. 
 
Bernoulli theorem: {Xn} ... is a sequence of the binomial independent random variables with 
parameters n=1 a )1,0(∈p  (so-called alternative random variable, let Xn = 1 in case the event 
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will be at one trial and Xn = 0 in case the event won't be; P(Xn = 1) = p  a P(Xn = 0) = 1-p). 
Then we know that 

nX   �
=

=
n

j
jX

n 1

.
1

pp→  

 
The expression on the left side represents a relative frequency of the event occurrence in the 
sequence n trials. That is why we can estimate a probability ingoing any occurrence by 
relative frequency of this event occurrence in the sequence n trials when we have a great 
number of the trials. 

 

Central limit theorem 

Lindeberg's theorem: 
Let X1, X2, ... , Xn ... be a sequence of independent random variables, n → ∞ . 
Xi ... have the same probability distribution, EXi = µ, DXi = σ2.  
Then  
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=1     has an asymptotic normal distribution N(0,1) �  )(lim uYP nn
<

∞→
= Φ(u)                          

                                for  - ∞ < < ∞u , it's mean that nY  converges in distribution to distribution 
N(0,1). 
 
For sufficiently large numbers n holds: 

1. �
=

=
n

i
in XX

1

  � EX = nµ, DX = nσ2 , we can approximate the distribution nX  by the 

distribution N( nµ, nσ2 ), i.e. nX  has the asymptotic normal distribution, 
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2. Analogous for X : 

      X = 
n

X
n

i
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=1  has the asymptotic normal distribution with parameters  E X  = µ, 

D X = σ 2
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Special case of the above theorem is Moivre-Laplace theorem: 
 
Let Sn ... Bi( n, p );  ESn  = np;  DSn  = np( 1-p ) 

[ �
=

=
n

i
in XS

1

,   Xi ... has the alternative distribution thus binomial Bi(1, p)] 

then for large n hold that  )1,0(
)1(

N
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n →
−

−= .       
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Applications of the Central Limit Theorem – Normal Approximations to 
the binomial and Poisson distributions 
 
Taking n observations of a Bernoulli distribution and computing the sample average p̂  is 
equivalent to defining the sample proportion random variable 
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1i    ˆ ... proportion of “successes“ in n Bernoulli trials 

 
The sample proportion will have a Binomial distribution will the values re-scaled from 0 to 1.  
That is, if X has a binomial distribution with parameters n and p. 
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Therefore by the Central Limit Theorem, we can approximate the binomial distribution by the 
normal distribution for large n. 
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Probabilities concerning ranges of value for these variables can then be calculated as 
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For smaller sample sizes a so-called continuity correction is often employed to improve the 
accuracy of the approximation.  Thus we would compute the preceding probability as  
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The Central Limit Theorem applies broadly to most distributions.  In particular, the normal 
distribution can be used to approximate the Poisson distribution when the interval of 
observation, t, and hence the expected number of events, λt, is large. Let 
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We know that the mean and variance of the number of events during an interval t is λt, and 
therefore the mean and variance of the rate at which events occur is 
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Probabilities concerning Poisson counts or rates can then be calculated as 
 

�
�

�
�
�

� −−�
�

�
�
�

� −=<<
t

tk
�

t
tk

�kXkP
λ

λ
λ

λ   
  

  
  )( 12

21
 

 

�
�
�
�

�

�

�
�
�
�

�

�
−−

�
�
�
�

�

�

�
�
�
�

�

�
−=<<

t

g
�

t

g
�g

t
X

gP
λ

λ
λ

λ   
  

  
  )( 12

21

 

 
 where, 
 

t
k

g
t
k

g 2
2

1
1                  ;     ==  

 
Applying the continuity correction, we would calculate the probability as, 
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6.3. Special sampling distribution 

Chi-square distribution  

The chi-squared random variable arises as the sum of squared standard normal random 
variables.  The distribution has a single parameter n, the number of squared normal random 
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variables in the sum.  This parameter is called the degrees of freedom of the chi-squared 
distribution. 
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A χ-squared random variable with one degree of freedom 2

1χ  is simply a squared standard 
normal random variable.  The distribution function of this random variable is 
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The probability density function of a χ1

2  random variable can be found from the derivative of 
its distribution function. 
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The general density for a   χn

2  random variable is 
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where ( )tΓ  is a gamma function. 
 
The mean and variance of the chi-squared distribution are 
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 The density function for various values of the parameter n: 
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The   χn
2  arises as the sampling distribution of the sample variance 
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If the Xi are a sample from a normal population with mean µ and standard deviation σ, then 
the sample variance has distribution 
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To see this, consider the sum of squared standardized observations from a normal population 
with mean µ and standard deviation σ. 
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This expression clearly has a   χn

2  distribution.  Now re-express the numerator by added and 
subtracting the sample mean from the squared terms. 
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Expanding and simplifying, we obtain 
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The second term is simply the squared standardized sample mean and therefore has a χ1

2  

distribution.  Since the   χn
2  is the sum of n squared normals, the first term must be the 

remaining n-1 squared normals.  Therefore, 
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Note that this argument is only heuristic and not a formal proof.  The independence of the 
sample mean from the deviations about the sample mean has not been established. 
 
This fact is important at the statistical hypothesis testing.  
1. We use this distribution for verification of the random variables independence.  
2. We can use chi-square distribution when we test that the random variables follow from 
certain distribution. This test is known as "Goodness-of-Fit Test".  
 
Student’s distribution (t distribution) 

The Student's t distribution is the sampling distribution of the standardized sample mean when 
the sample variance is used to estimate the true population variance.  The origin of the 
distribution's name, Student's t has an interesting history.  An Irish statistician, W. S. Gosset 
first published this distribution anonymously under the pseudonym "Student" because his 
employer, Guiness Breweries of Dublin, prohibited its employees from publishing under their 
own names for fear that its competitors would discover the secret of their excellent beer.  In 
his original paper, Gosset used the designation "t" for his statistic.  Hence the name is 
Student's. 
 
The Student's t distribution with n degrees of freedom is the ratio of a standard normal 
random variable over the square root of a chi-squared random variable divided by its degrees 
of freedom.  The t distribution has a single parameter, n the degrees of freedom of the chi-
squared random variable in the denominator. 
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The probability density function of this random variable is 
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The mean and variance of the t-distribution are 
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The following figure shows the density function for different values of number of the degrees 
of freedom: 
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If random variables X1,X2,...,Xn have the normal distribution N(µ,σ2) and they are 
independent then we can show that  
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Student's t-distribution has a wide exercise.  
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Fisher-Snedecor‘s distribution - F distribution 

Snedecor's F distribution arises as the ratio of two chi-squared distributions divided by their 
respective degrees of freedom. The F distribution has two parameters, n the degrees of 
freedom of the chi-squared random variable in the numerator and m the degrees of freedom of 
the chi-squared random variable in the denominator. 
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The probability density function of this random variable is     
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The mean and variance of the t distribution are 
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The following figure shows the density function for different values m a n: 
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Clearly such a distribution would arise as the sampling distribution of the ratio of the sample 
variances from two independent populations with the same standard deviation σ.  The degrees 
of freedom represent one less than the samples sizes of the numerator and denominator 
sample variances respectively. 
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We use this distribution for evaluation of statistical analysis results.  

 

 Summary of notions 
 

One of the most important continuous distributions is a normal distribution. It is distribution 
with two parameters, when the first parameter is a mean and the second one is a variance. We 
get standard normal distribution for special choice of parameters (the mean is equal 0 and the 
variance is equal 1).   
Chebyshev's inequality puts an upper bound on the probability that an observation should be 
far from its mean. 
Chí-square distribution is a distribution derived from sum of squared standard normal 
random variables.  
Central limit theorem describes asymptotic statistic behavior of mean. We can use it for 
substitution of binomial (Poisson) distribution by normal distribution. 
Student's t-distribution with n degrees of freedom is the ratio of a standard normal random 
variable over the square root of a chi-squared random variable divided by its degrees of 
freedom.  
F distribution is the ratio of two chi-squared distributions divided by their respective degrees 
of freedom.    

 

 
 

 

1. Define relation between normal and standard normal distributions. 

2. What is Chebyshev's inequality? 

3. Explain law of large numbers. 

4. Describe chi-square distribution. 

 

 

 

  Questions  
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Example  1: If the mean (µ) height of a group of students is equal to 170cm with a standard deviation 
(σ) of 10 cm, calculate the probability that a student is between 160cm and 180cm. 
 
{Answer: 0,6828} 

Example  2: Let X = "height of a randomly chosen male", and suppose that X is normally distributed 
with µ = 176cm and σ2 = 25 cm2,i.e. X is N(176,25): 

(i) calculate the probability that the height of a randomly chosen male is less than or equal to 
182 

(ii) calculate the probability that the height of a randomly chosen male is less than or equal to 
170 

(iii) calculate the probability that the height of a randomly chosen male is not greater than 176 
(iv) calculate the probability that the height of a randomly chosen male is between 170 and 182 

cm 
(v) calculate the probability that the height of a randomly chosen male is not less than 160 
 

{Answer: (i) 0.885, (ii) 0.115, (iii) 0.5, (iv) 0.7698. (v) 0.9993} 
 

Example  3: We take the heights of 9 males and we assume that the heights are i.i.d. N(176,25) as 
before. What is the probability that the sample mean height is between 174 and 178 cm? 
 
{Answer: 0.7698} 
 
Example   4: Premature babies are those born more than 3 weeks early. A local newspaper reports that 
10% of the live births in a country are premature. Suppose that 250 live births are randomly selected 
and the number Y of "preemies" is determined. 

(i) What is the probability that X lies in between 15 and 30 (both included)? 
(ii) Find the proportion of the event fewer than 20 births are premature? 
 

{Answer: (i) 0.86, (ii) 0.12} 

   Problems  
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   Study time:  50 minutes 
 

7. INTRODUCTION TO STATISTICAL INFERENCE  
 

 

 

 
 

 Explication 
 

7.1. Introduction – The Scientific Method 
 Science is a process of systematic learning which proceeds by alternating between 
inductive and deductive methods of investigation. 
 

THEORY

DATA

Induction

Deduction

 
 The methods of induction and deduction are the connections between data and theory 
of a science.  The deductive method proceeds in a logically consistent fashion to project what 
data should result from a particular theory.  Induction is an informal process which tries to 
postulate some theory to reasonably explain the observed data. 
 
 Statistics to be a complete science must embody both inductive and deductive 
methods.  The first topic of the course, exploratory data analysis, was an attempt to 
understand observed distributions of data and was therefore an inductive method.  Without 
some theory of randomness however, the ability of EDA methods to induce precise 
explanations was limited.  Therefore, we introduced the theory of probability and discussed its 

    Aim - you will be able to 

• understand the random sampling term 

• use the sampling distribution and their properties 
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applications to various hypothetical sample spaces.  Probability theory is the basis of 
deductive methods of statistics. 
 
 Probability theory proceeds by assuming a hypothetical sample space or population on 
which a probability measure is defined.  Probability distributions of random variables defined 
on this sample space are then derived mathematically.  The probability of any sample 
observation from the hypothetical population can then be determined. 
 

 

POPULATION
Sample

( Ω )( Ω )( Ω )( Ω )

Known Probability Distribution 
of Population

Sampling Distributions 
of Sample Statistics 

Deductive Theory of Probability

 
 

 If probability theory is the deductive method of statistics, then by implication, theory 
in statistical science must be represented by some well-defined population with a known 
probability distribution and data by the sample drawn from that population.  Statistical 
inference then becomes the inductive methods for using sample data to make inferences about 
the probability distribution of the population from which the sample was drawn. 
 

Probability Theory 
(Deduction)

Population

Sample

Statistical Inference 
(Induction)

 
 
 Statistical inference then is the inverse of probability theory.  It is the process of 
making statements about an unknown population on the basis of a known sample from that 
population. 
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POPULATION
Sample

( Ω )( Ω )( Ω )( Ω )

 
 

Viewing statistical science in this light may led us to ask why we have studying 
probability theory at all.  Surely probability theory is answering the wrong question.  The 
hypothetical problem of sampling from a known population never occurs in practice.  In 
statistics, the population is always unknown and we not generate sample data in order to 
obtain information about the unknown population.  In practice, is not statistical inference the 
only problem of statistical science?   
 

7.2. Random Sampling 
 

In most statistics problems, we work with a sample of observations selected from the 
population that we are interested in studying. Following Figure illustrates the relationship 
between the population and the sample.  

 
 
We have informally discussed these concepts before; however, we now give the formal 
definitions of some of these terms. 
 
Definition:  
A population consists of the totality of the observations with which we are concerned. 
 
      In any particular problem, the population may be small, large but finite, or infinite. The 
number of observations in the population is called the size of the population. For example, the 
number of undefiled bottles produced on one day by a soft-drink company is a population of 
finite size. The observations obtained by measuring the carbon monoxide level every day is a 
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population of infinite size. We often use a probability distribution as a model for a 
population. 
 

For example, a structural engineer might consider the population of tensile strengths of 
a chassis structural element to be normally distributed with mean _ and variance. We could 
refer to this as a normal population or a normally distributed population. In most situations, 
it is impossible or impractical to observe the entire population. For example, we could not test 
the tensile strength of all the chassis structural elements because it would be too time 
consuming and expensive. Furthermore, some (perhaps many) of these structural elements do 
not yet exist at the time a decision is to be made, so to a large extent, we must view the 
population as conceptual. Therefore, we depend on a subset of observations from the 
population to help make decisions about the population. 

 
Definition:  
A sample is a subset of observations selected from a population. 
 

For statistical methods to be valid, the sample must be representative of the 
population. It is often tempting to select the observations that are most convenient as the 
sample or to exercise judgment in sample selection. These procedures can frequently 
introduce bias into the sample, and as a result the parameter of interest will be consistently 
underestimated (or overestimated) by such a sample. Furthermore, the behavior of a judgment 
sample cannot be statistically described. To avoid these difficulties, it is desirable to select a 
random sample as the result of some chance mechanism. Consequently, the selection of a 
sample is a random experiment and each observation in the sample is the observed value of a 
random variable. The observations in the population determine the probability distribution of 
the random variable. To define a random sample, let X be a random variable that represents 
the result of one selection of an observation from the population. Let f(x) denotes the 
probability density function of X. Suppose that each observation in the sample is obtained 
independently, under unchanging conditions. That is, the observations for the sample are 
obtained by observing X independently under unchanging conditions, say, n times. Let Xi 

denote the random variable that represents the ith replicate. Then, X1, X2 … Xn  is a random 
sample and the numerical values obtained are denoted as x1, x2, …,xn. The random variables in 
a random sample are independent with the same probability distribution f(x) because of the 
identical conditions under which each observation is obtained. That is, the marginal 
probability density function of X1, X2 … Xn   is  

 
f (x1),  f (x2),… f (xn)  

 
respectively, and by independence the joint probability density function of the random sample 
is 
 

f X1X2,…Xn(x1, x2, …,xn) = f(x1) f(x2)… f(xn). 
 
Definition:  
The random variables X1, X2 … Xn are a random sample of size n if (a) the Xi’s are 
independent random variables, and (b) every Xi  has the same probability distribution. 
 
     To illustrate this definition, suppose that we are investigating the effective service life of 
an electronic component used in a cardiac pacemaker and that component life is normally 
distributed. Then we would expect each of the observations on component life in a random 
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sample of n components to be independent random variables with exactly the same normal 
distribution. After the data are collected, the numerical values of the observed lifetimes are 
denoted as x1, x2, …,xn.  
     The primary purpose in taking a random sample is to obtain information about the 
unknown population parameters. Suppose, for example, that we wish to reach a conclusion 
about the proportion of people in the United States who prefer a particular brand of soft drink. 
Let p represent the unknown value of this proportion. It is impractical to question every 
individual in the population to determine the true value of p. In order to make an inference 
regarding the true proportion p, a more reasonable procedure would be to select a random 
sample (of an appropriate size) and use the observed proportion p̂  of people in this sample 
favoring the brand of soft drink. 
    The sample proportion, p̂  is computed by dividing the number of individuals in the sample 
who prefer the brand of soft drink by the total sample size n. Thus, p̂ is a function of the 
observed values in the random sample. Since many random samples are possible from a 
population, the value of p̂  will vary from sample to sample. That is, p̂  is a random variable. 
Such a random variable is called a statistic. 
 
Definition:  
A statistic is any function of the observations in a random sample. 
 

We have encountered statistics before. For example, if  X1, X2 … Xn is a random 
sample of size n, the sample mean X the sample variance S2, and the sample standard 
deviation S are statistics. 

Although numerical summary statistics are very useful, graphical displays of sample 
data are a very powerful and extremely useful way to visually examine the data. In first 
lecture we presented a few of the techniques that are most relevant to engineering applications 
of probability and statistics. 

 
7.3. Sampling Distribution 
Let’s assume that given random sample comes from normal distribution: 
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Now assume two samples from the normal distribution 

X=(X1, ... , Xn)‘, ),( 2
11 σµNX i → , Y=(Y1, ... , Ym)‘ ,  ),( 2
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Now assume that the variances are the same and unknown: 2
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 Summary of notions 
 

The random sample is the special random vector whose elements are independent 
random variables with the same probability distribution. 
 If the random sample comes from the normal distribution of probability we can 
derivate other significant statistics with known distribution from given random sample, e.g.  t- 

statistics   1−→⋅−
n

n tn
s

X µ
 or two-sample t-statistics:  
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These other statistics will be later used for the construction of interval estimation or for 
hypothesis testing. 

 
 

 
 
 
 
 
 

1.   What is the statistical induction? 

2.   Characterize the term a random sample. 

  Questions 
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   Study time:  80 minutes 
 

8. HYPOTHESIS TESTING 
 

 

 
 

 Explication 

 

8.1. Introduction 
In this chapter we will construct test and with their help we accept or reject some population 
hypothesis.  
The most frequent case is a situation when we can describe a population by some probability 
distribution which depends on � parameter. Based on the trial result we can for example want 
to accept or reject an opinion that � has some concrete value �0. In other situation we can be 
interested in our hypothesis validity that given population comes from a concrete distribution. 
Procedures leading to similar decisions are called significance tests. 
Statistic hypothesis - the assumptions about population whose trueness can be verified by 
statistic significance tests 
Significance tests - procedures which decide if a verified hypothesis should be accepted or 
rejected based on random sample 
Null hypothesis H0 - verified hypothesis whose rejection is decided by a significance test 
Alternative hypothesis HA - hypothesis which is accepted when we reject null hypothesis 
 
 
8.2. Pure Significance Tests  
 
The pure significance test asks whether the sample result is extreme with respect to some 
hypothesized distribution. 
 
If the sample data lies at an extremely high or extremely low percentile of the hypothesized 
distribution, then the hypothesis is in doubt. 
  

    Aim  - you will be able to 

• conclude by the pure significance test 

• use basic sample and two sample tests 

• conclude by paired test and tests for proportions 
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HYPOTHESIZED  
     POPULATION 

Known sample 
Data 

 

  
Is data consistent with hypothesized population ? 

 
 
The pure significance test consists of the following components: 
 
1. Null Hypothesis: H0 
 – The null hypothesis expresses some belief about the nature of the population. It must 
be specified precisely enough to define a probability measure on the population. 
 
2. Sample Statistic: T(X) 
 – The sample statistic is a function of the sample data drawn from the population.  The 
choice of sample statistic is determined by the characteristics of the population's 
probability distribution with which the null hypothesis is concerned. 
 
3. Null Distribution: F0(x) 
 )   )((    )( 00 HxXTPxF <=  

 - The null distribution is the probability distribution of the sample statistic when the 
null hypothesis is correct.  The null hypothesis must be specified precisely enough to 
determine the null distribution. 
 
4. To determine whether the observed sample statistic t=xOBS is extreme with respect to 

the null distribution, a statistic known as the p-value is computed.  The p-value has 3 
definitions depending on the context of the null hypothesis, but in all cases, the 
interpretation of the p-value is the same. 

  
 Definition 1:  PVALUE    =   0F (xOBS ) 
 
This definition is used when we are concerned that the distribution of the sample statistics 
may be less than the null distribution. 
 
 Definition 2:  PVALUE    =   1 - 0F (xOBS ) 
 
This definition is used when we are concerned that the distribution of the sample statistics 
may be greater than the null distribution.  Such is the case in our first example. 
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 Definition 3:  PVALUE    = 2 min [ 0F (xOBS ), 1 - 0F (xOBS ) ] 
 
This definition is used when we are concerned that the distribution of the sample statistics 
may be either greater or less than the null distribution.  Note that this definition is only 
applied when the null distribution is symmetric.  
 

0 

pVALUE 

H0 

 
Figure: Graphical presentation of VALUEp  for definition 3 by area below spline of density of 
the null distribution.  
 
When the null hypothesis is correct, the distribution of the p-value under all three definitions 
is uniform.  That is, 
 
   pHpXpP VALUE     ))(( 0 =<  

 
Therefore, the p-value has the same interpretation for all null hypotheses independent of the 
original null distribution.  Clearly, smaller p-values are more extreme with respect to null 
distribution.  Therefore, the smaller the p-value, the stronger the evidence of the sample 
statistic against the null hypothesis.  But how small must the p-value be before the evidence is 
strong enough to reject the null hypothesis?  Strictly speaking, this would again depend on the 
context in which the hypothesis is tested.  However, since the weight of evidence against the 
null hypothesis increases continuously with decreasing p-value, it would be unreasonable to 
designate a single p-value cut-off point below which the null hypothesis is rejected and above 
which it is accepted.  Rather we should expect an inconclusive region separating the accept 
and reject p-values. 
 
 

5. Conclusion in terms of VALUEp   
 
                VALUEp   <  0,01             reject H0 
 
  0,01  <  VALUEp   <  0,05 test is inconclusive 
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     VALUEp   >  0,05   accept H0 
 
 
 
 

 
 
 
 
8.3. Alternate hypothesis  
 
From the definition of the p-value, it is clear that the pure significance test procedure for 
hypothesis testing requires not only a specific null hypothesis but also but notion of which 
alternative might be correct if the null hypothesis is rejected.  The alternate hypothesis need 
not be specified as precisely as the null hypothesis.  To select the appropriate definition of the 
p-value, it is only necessary to know the direction of the alternative with respect to the null.  
However, the alternate hypothesis will also influence the choice of sample statistic.  Those 
values of the sample statistic which have a small p-value under the null hypothesis should 
tend to have a larger p-value for prospective alternatives and vice versa. (Large null p-values 
should have small alternate p-values). 
 
8.4. Hypothesis Tests for mean and median  
 

      Solved example 1 
 
Consider the following ten IQ scores.  IQ test scores are scaled to have a mean of 100 and a 
standard deviation of 15. 
 
65 98 103 77 93 
102 102 113 80 94 
 
We wish to test the hypothesis that the mean is 100. 
  
Solution: 
 
We can illustrate this sample:  

 
reject H0    test is   accept H0 
  inconclusive 
 
              0,01         0,05 
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60 80 100 120 

X = 92.7 

Median = 96 

 
  
H0: X (IQ)  has N( 100, 15 );  µ0  =  100 ;  σ  =  15 
 

 Under 0H  �
�
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�→�  
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 ,100        NX  

 

  
54.1    

10
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100  7.92
        

51.14          ; 7.92    
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n

X
Z

sX

σ
µ  

 
   VALUEp  =  Φ(-1.54)  = 0,06178 
          
Accept H0:  µ0  =  100 
 

Notes: a) When the sample size n is large, the Central Limit Theorem permits the 
use of this test when the original population is not normally distributed. 

 
 b) If σ is not known and the original population is not normally distributed, 

the sample standard deviation s may be substituted when the sample size 
is large. 

  

      Solved example 2  
 
- we have same data as with example1 
 
Student's test for mean of small samples 
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  H0: X  je N( 100, σ );  µ0  =  100 ;  σ  is uknown  

 

91

0

        

59.1    

10
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100  7.92
        

51.14          ; 7.92    
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n =→

−=−=−=

==

−

µ  

 
 VALUEp   =   t n-1(-1.59)  =0,073149 
 
Accept H0:  µ0  =  100. 
 

Notes: a) When the sample size n becomes larger than about 30, the t distribution 
becomes very similar to the normal distribution. 

          
 

      Solved example 3 
 
- we have same data as with example1 
 
Sign test for median 
An alternative to testing the hypothesis is that the mean equal to 100 is to test the median 
equal to 100.  If the median is m0, then the probability of any observation exceeding the 
median is 0.5.  Therefore, the number of observations in a sample of n which exceed the 
hypothesized median will have a binomial distribution with parameters n and 0.5. 
 
 H0: X (IQ) has median m0  =  100 
 
   Let Y  =  number of observations >  m0 
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The test result shows no inconsistency between the data and the hypothesis. 
 

Notes: a) The following test makes no assumption about the form of the original 
distribution and can therefore be applied to any distribution. 

 
  b) The sign test has lower power than the t test when the original 
distribution is normal or the z test when the Central Limit Theorem applies but is not affected 
by departures from these conditions and is not sensitive to outliers. 
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      Solved example 4 
 
- we have same data as with example1 
 
Wilcoxon signed rank test for medians  
 
A second alternative to tests for sample means based on the normal distribution is to replace 
the observed values by their ranks and calculate a test statistic from the ranks.  To test 
whether the median is equal to some hypothesized value m0, we first calculate the absolute 
difference of each observation from m0.  The absolute differences are then replaced by their 
ranks or the number of their position.  The ranks are then signed -1 if the original observation 
is less than m0 and +1 if the original observation is greater than m0.  If the hypothesis that the 
true median equals m0 is true, then each rank or integer between 1 and n, the sample size has 
equal probability of being positive or negative.  Therefore, the expected value of the mean of 
the signed ranks should be zero.  Therefore calculating the mean and standard deviation of the 
signed ranks and forming the z-score as we do for the t test would produce a reasonable test 
statistic. 
 
H0: X (IQ) has median  m0  =  100 

0    mxy ii −=

  

ri = rank(yi) 

=−= iii rmxr  )( sgn    0
* signed rank(yi) 

 
For the observations of IQ scores these results are as follows:  

IQ score Absolute 
difference yi 

Rank of absolute 
difference  ri 

Signed rank ri
* 

93 7 6 -6 
94 6 5 -5 
77 23 9 -9 
80 20 8 -8 
103 3 4 4 
113 13 7 7 
98 2 2 -2 
102 2 2 2 
65 35 10 -10 
102 2 2 2 

 
For the three observations which have the same absolute difference from the hypothesized 
median, the average of the three ranks has been assigned. 
 
The test statistic of the ranks is calculated as follows.  First calculate the mean and standard 
deviation of the signed ranks. 
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Then calculate the z-score for the mean signed rank remembering that the expected value of 
the mean signed rank is zero under H0. 
 
   325.1        −==

n
s

r
w

r

 

 
 VALUEp  =  W( -1.325 )  = � (-1.325)  =  .09257 
 
Accept H0. 
 

Notes: a) Like the sign test, the Wilcoxon signed rank test makes no assumption 
about the form of the original distribution.  If the original distribution is 
normal, the Wilcoxon test will have less power than the t test, but will be 
less sensitive to departures from the assumption of normality.  As a 
general rule for small samples it is reasonable to compute both the usual t 
test and the Wilcoxon test.  If the two tests give very different p-values, 
this would act as a warning that the original distribution may be seriously 
non-normal. 

 
 b) Because the ranks are fixed pre-determined values, the Wilcoxon statistic 

will not be sensitive to outliers. 
 
 c) Computationally simpler formulas for computing the Wilcoxon test 

statistic which exploit the fact that ranks are fixed values are given in 
some books. 

 
 
 
8.5. Errors through testing 
  
When we make a decision about competing hypotheses, there are two ways of being correct 
and two ways of making a mistake. This can be depicted by the following table. 
 

 
 
 
 
 
 
If we make a decision leaning toward H0 and H0 is indeed true (true situation), then we did not 
make an error. If we make a decision leaning toward HA and HA is true, then again we did not 
make an error. These are the probabilities appearing in the upper left and lower right corners. 
The probabilities in the lower left and upper right are related to the errors made by not making 
the correct decisions. These probabilities are designated by the Greek letters � ("alpha") and 

 True situation 
 H0 HA 

H0 OK  Error II 
 
 
Decision HA Error I OK 
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� ("beta"). 
� is called a Type I Error. It is the probability of falsely rejecting H0. It is often referred to as 
the significance level and it represents the risk one is willing to take in rejecting falsely. The 
user or researcher has complete control over �. Typical (and subjective) values of � are 0.05 
and 0 .01. If the consequence of a Type I Error is something in the nature of increased risk of 
death for a patient or increased risk in financial loses, then one would use a level of 
significance no greater than 0.01. 
� is called a Type II Error. It is the probability of falsely accepting H0. Unlike a Type I Error, 
it is difficult to quantify �. More will be said about this later. If the consequence of HA is 
extremely attractive and if the results of a Type I Error are not catastrophic, it may be 
advisable to increase the risk of making a Type I Error and use a level of significance that is 
0.05 or higher. 
Admittedly it is difficult at this time to fully comprehend these concepts. Hopefully things 
will make more sense when we go more deeply into hypothesis testing. 
 

P(Error I) = P(PVALUE < α | H0 ) = α 
 

 
 
 

P(Error II) = P(PVALUE > α | HA ) = β 
 
 

8.6. Two sample tests, paired sample tests and tests for proportions 

      Solved example 5 
 
A situation which arises frequently in practice is the two sample test.  Two samples have been 
obtained from difference sources and it is necessary to determine whether the two sources 
have the same mean or median.  One source may be a control group and the other an 
experimental group.  For example, to determine the effectiveness of a new teaching method, a 
controlled experiment may be conducted in which one group of students, the control group, is 
taught by traditional methods and a second group by the experimental method.  The research 
question in this case is whether the students taught by the experimental method attained 
higher results. 
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 Sample from population  #1 
 

60 49 52 68 68 

45 57 52 13 40 

33 30 28 30 48 
 
 
 Sample from population  #2 
 

38 18 68 84 72 

48 36 92 6 54 
 
 
 

0 20 40 60 80 100 

Mean 
 

Mean 

Median 

Median 

#  1 

#  2 

 
 
 The sample means and standard deviations are: 

 
93.27             ;51.6    :2#
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2. Student's t test for difference of means  
  
The assumption of equality of variance in both populations requites the computation of a 
single estimate of standard deviation called the pooled sample standard deviation.  The pooled 
standard deviation is the average of squared deviations of all observations from the sample 
mean of their respective populations.  If xi is the ith sample observation from population #1, 
and yj is the jth sample observation from population #2, then the pooled standard deviation is 
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Under the assumption of equal variance in both populations the estimated standard deviation 
of the difference of sample means will be 
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Then the two sample t statistic is computed as: 
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and will have a t distribution with (n1 + n2 - 2) degrees of freedom. 
 
Although the assumption of equal variances is questionable in light of the difference in 
sample standard deviations, the two sample t test applied to the IQ data above yields the 
following result. 
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3.  Mann –Whitney or Wilcoxon rank test for difference of medians 
 
The two sample rank test is equivalent to ranking the total sample from the two populations 
and calculating the two sample t test using the ranks rather than the original observations.  For 
the IQ data, this gives the following results. 
 
Ranks for population #1 
 

19 14 15.5 21 21 

11 18 15.5 2 10 

7 5.5 4 5.5 12.5 
 
  
Ranks for population #2 
 

9 3 21 24 23 

12.5 8 25 1 17 
 
The means and standard deviations of the ranks in each population are 
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The pooled sample standard deviation of ranks is 
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The test statistic is 
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Paired sample tests 
 When testing the effect of some experimental condition or comparing the effects of 
two different conditions, the experimental design often applies either conditions or both 
experimental and control conditions to the same sampling units or in this case experimental 
units.  The rationale for this design is that variation in experimental results due to differences 
in sampling units can be eliminated leaving only measurement variation to obscure the effects 
of the experimental conditions.  However, to secure the benefits of reduction in variation 
offered by this design, the appropriate methods of data analysis and construction of test 
statistic must be applied. 
 
 Suppose two observations under different conditions are taken of n sampling units.  
For example heart rate before and after exercise.  Let Xi0 be the initial observed value for the 
ith sampling unit and Xi1 the subsequent observed value for the same sampling unit.  Such a 
design is called a paired sample design.  It is possible to analyze this data and test the 
hypothesis of no difference between the two experimental conditions using the two sample 
methods discussed above.  However, this approach would failure to take advantage of the 
opportunity to eliminate variation due to differences in individual sampling units. 
 
 A statistically more efficient method to analyze this data is to take advantage of the 
paired nature of the data and create a single value for each sampling unit.  In the simplest data 
model, this value would be the difference of the two observations for each sampling unit. 
  
     01       iii XXd −=  
 
The value di is the result only of differences in experimental conditions and experimental 
error.  The methods discussed in the section on one sample tests can then be used to test the 
hypotheses that the mean or median of di is zero which is equivalent to no difference between 
the two experimental conditions. 
 

      Solved example 6 

Consider the following example of the heart rates of 12 patients at rest and after ten minutes 
of exercise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 124 

Resting rate Rate after Exercise Difference of Rates Signed Rank of 
Difference 

42 52 10 3.5 

173 175 0 1 

113 147 34 11 

115 83 -32 -10 

69 123 54 12 

101 119 20 6 

94 69 -25 -7 

93 123 30 8.5 

112 82 -30 -8.5 

67 57 -10 -3.5 

104 100 -4 -2 

76 89 13 5 
 
The sign test is also applicable to this data.  For this data, there are 5 negative signs out of 12 
observations. If the true median were 0, the number of negative signs has a binomial 
distribution with parameters n = 12, and p = 0.5 and the probability if this event is: 
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For such a small sample with unspecified population variance, we assume that the 
observations are normally distributed and apply the Student's t-test. 
 
The mean and standard deviation of the paired differences are 
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and the t-statistic is 
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valuep  = from Definition 2 = t11(0.645) = 0.266 

 
Applying the Wilcoxon signed rank test to these data yields the following results.  The mean 
and standard deviation of the paired differences are 
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and the W  statistic is 
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Tests for proportions 
 
When testing hypotheses about the proportion of a population having some attribute, the 
sample size, n, will be large enough in most cases to use the normal approximation to the 
distribution of the sample proportion.  Under the null hypothesis that the population 
proportion is equal to some specified value, 
  

H0: p  =  p0 
 
The distribution of the sample proportion will be approximately normally distributed for large 
n. 
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and the p-value can be calculated from the z-score of the sample proportion. 
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      Solved example 7   

If the manufacturer's specifications for the defective rate of an item is not to exceed 3%, and 7 
defective items are found in a sample of 95, then the p-value for testing the hypothesis that the 
sampled population meets the manufacturers specification is 
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 � pvalue .006 0   ) 2.5 (1   =−=

 

 
Reject H0. 
 
 
Two sample test for proportions 
 
A two sample test for proportions arises when samples are taken from two populations and the 
null hypothesis to be tested is that the proportions in both populations are the same.  If the 
samples from each population are large enough, the normal approximation can again to 
applied to the distribution of the difference of sample proportions.  However, since the null 
hypothesis does not specify a single value for p in each population, the variance is estimated 
using the total proportion from the samples of both populations which is the maximum 
likelihood estimate of p under the null hypothesis of equal proportions in both populations. 
 

 

      Solved example 8 

Let X1 be the number of items in a sample of n1 from population # 1 having the attribute and 
X2 be the number of items in a sample of n2 from population # 2 having the attribute.  Then 
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Then under the null hypothesis that the proportions in the two populations are equal, 
 
 H0: p1  =  p2 
 
the distribution of the difference in sample proportions is: 
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For example, suppose 12 defective items were found in a sample of 88 from one production 
run and 8 defective items in a sample 92 from a second run.  Then, 
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Then the z statistic for testing the hypothesis that the defective rate in both runs is the same is 
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 � pvalue 146.0  ) 1.054 (1   =−=

 

 
Accept H0. 
 

      Solved example 9 

We have two types of floppy disks - Sony and 3M. In any packet are 20 disks. There were 
found 24 defective disks into 40 Sony packets and there were found 14 defective disks in 30 
3M packets. Does difference in the quality of Sony and 3M disks exist?  
 
Solution: 
 

1p̂  = 
24

40 20.
 = 0.030        (proportion of defective Sony disks) 

2p̂  = 
14

30 20.
 = 0.023   (proportion of defective 3M disks) 

  p̂  = 
24 14

40 30 20
+

+( ).
= 0.027 

 
 1. H0: 21 pp =  
     HA: 21 pp >  
 
 2. We select test statistic  
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 3. p-value = 1- Φ (P2) = 1 - Φ (0,80) = 0,21                         Φ (0,80) = 0,79 
                                            /                                                         
             (Z has a standard normal distribution) 
 
 4. p-value >>> 0.05 � accept  H0   
 
We can't affirm that there exists statistical important difference in quality of Sony and 3M 
floppy disks. 
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 Summary of notions 
 

The pure significance test answer a question if given random sample X (its observed values) 
is or is not extreme in relation to some tested hypothesis about population. It consists of 5 
steps. The last step concludes about acceptation or rejection H0. The most often we use 
hypothesis tests for mean and median: Student's test, Wilcoxon test for median.  
Through conclusion of the pure significance test we can commit errors. Cause we don't know 
a real situation. In case that we reject H0 but it is true then we have type 1 error.  If we accept 
HA but H0 holds in fact we have type 2 error. 
The following tests are the most often used: Student's test for difference of mean, Wilcoxon 
rank test for difference of medians and paired tests. There are the most often used the tests 
for proportions in engineering practice 
  

 
 

 

 

1. How we get PVALUE? 

2. What is the alternate hypothesis? 

3. Characterize two sample tests for proportions. 
 

 

 

 

 

Example  1: Suppose we want to show that only children have an average higher cholesterol level 
than the national average.  It is known that the mean cholesterol level for all Americans is 190. We test 
100 only children and find that mean is 198 and standard deviation is 15. Do we have evidence to 
suggest that only children have an average higher cholesterol level than the national average? 

{Answer: reject H0 , therefore, we can conclude that only children have a higher cholesterol level on 
the average then the national average. }  

 

Example  2:  Nine dogs and ten cats were tested to determine if there is a difference in the average 
number of days that the animal can survive without food.  The dogs averaged 11 days with a standard 
deviation of 2 days while the cats averaged 12 days with a standard deviation of 3 days.  What can be 
concluded? 

{Answer: We fail to reject the null hypothesis and conclude that there is not sufficient evidence to 
suggest that there is a difference between the mean starvation time for cats and dogs. } 

 

  Question  
 

   Problems  
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   Study time:  40 minutes 
 

9. POINT AND INTERVAL ESTIMATION 
 

 

 

 
 
 

 Explication 
 

9.1. Introduction 
 
 The estimation problem is distinguished from hypothesis testing.  In hypothesis testing 
we had a preference towards null hypothesis and only rejected it in face of strong contrary 
evidence.  In the case of estimation, all parameter values or potential hypotheses are equal and 
we want to choose as our estimates those values which are supported by or consistent with the 
data.  An estimate by itself is just a number.  Anyone can make an estimate.  To be usable, the 
accuracy of the estimate must also be known.  Therefore in addition to deriving estimates, we 
must also make some assessment of the error of estimation. 
 

9.2. Interval Estimation 
 
 The objective of interval estimation is to find an interval of values which have a high 
likelihood or probability of containing the true parameter values.  The strategy used is to find 
those values which would have a large p-value if they had been chosen as the null hypothesis, 
i. e. those parameter values which are not inconsistent with the data.  In order to give a 
probability interpretation to the data, we usually choose a fixed p-value, either one-sided or 
two-sided depending on whether we want a one or two sided interval, and then include in our 
interval all parameter values whose p-value for the observed data exceeds the chosen 
minimum p-value, �.  The probability of the sample having a p-value which exceeds the 
selected p-value is 1-�, and therefore the probability that the interval so constructed will 
include the true parameter value is also 1-�.  We call the value 1-� the confidence level of the 
interval. 
 
 Consider the example of sampling semi-conductor devices to determine the proportion 
of defective devices produced.  In this case, suppose it is a new process and we wish to 

    Aim - you will be able to 

• explain the properties of the point estimation 

• construct interval estimations for mean, standard deviation and variance 
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estimate a maximum value for the proportion of defectives.  A sample of 12 devices is 
selected and tested.  Three are found to be defective.  Since we are interested in an upper 
bound, we ask how large the true proportion of defectives can be before our observed sample 
has a very small probability.  For some proportion, p, of defective devices, the probability of 
obtaining less than 4 defectives in a sample of 12 is 
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 To obtain a (1-� ) upper for p, we find the value of p such that the p-value is exactly � 
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 The following diagram illustrates the p-value as a function of the proportion of 
defectives, finds the value of p whose p-value is � = 0.1, and identifies the 90% upper 
confidence limit for p. 
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 The probability that a population with 47% defectives will have less than 4 defectives 
in a sample of 12 is 10%.  Thus, we are 90% confident that the true proportion of defectives is 
less than 47%.  Another way of expressing this idea is to say that 90% of confidence intervals 
calculated by this methodology will include the true proportion of defectives. 
 
 Consider a second example.  A firm which assembles PC's from basic components, 
loads the software, and tests the system before delivery is interested in estimated how long it 
takes a worker to complete preparation of a PC for delivery.  They observe a worker for 4 
hours, one half of his daily work period.  In that time, the worker completes 7 PC's.  If we 
assume that the time to complete a single PC is exponentially distributed then the number of 
PC's completed in 4 hours will have a Poisson distribution.  The firm is interested in 
estimating an upper bound for the mean time to complete a PC or equivalently a lower bound 
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for the rate at which PC's are completed.  Therefore we ask how low the rate � can be before 
the probability of our sample result, more than 6, has a very small probability.  For a given 
value of � , the p-value of our sample is 
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 The following diagram illustrates the p-value as a function of the completion rate �, 
finds the value of p whose p-value is �=0.1, and identifies the 90% upper confidence limit for 
�. 
 

 

0 
0.1 
0.2 
0.3 
0.4 
0.5 

0.6 
0.7 
0.8 

0.9 
1 

0 3 6 9 12 15 

90% Confidence Interval 

Prob[ X > 6 |   ] λ 

 
 

 If the rate of preparing PC's for delivery is per 4 hour period, then the probability of 
completing 7 or more PC's in 4 hours is 10%.  Therefore, we are 90% confident that the true 
rate of preparation is at least 3.9 computers per 4 hours, or slightly less than one computer per 
hour.  Alternatively the mean time to complete each PC is no more than 61 minutes 32.3 
seconds.  This is obviously a conservative estimate since in our sample, computers were 
completed at the rate of 7 per 4 hours or 1.75 per hour with an equivalent mean preparation 
time of 34 minutes 17 seconds.  To obtain a less conservative estimate at the same confidence 
level, a larger sample size is required. 
 
 This analysis depends on the assumption that the time to complete a PC is 
exponentially distributed.  In practice this is unlikely to be a very good model because in 
theory according to the exponential distribution, the PC could be completed instantaneously.  
The Poisson process is a more appropriate model for events which occur randomly such as 
traffic accidents. 
 
 Now consider an example where we wish to estimate both an upper and lower bound 
for the parameter.  In this case, we use the p-value for testing hypotheses against two-sided 
alternatives.  The 1-� confidence interval is the set of all parameter values having a p-value 
greater than �. 
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 Files transmitted via computer networks are often bundled into groups of files having 
similar network pathways.  Into order to determine the optimal number of files to include in a 
single bundle, network engineers need some estimate of the distribution of file size.  A sample 
of 15 files is taken with the following result.  Sizes are in MB units 
 

4.027 1.887 3.806 7.018 2.753 

5.956 8.117 2.857 4.525 7.282 

0.140 6.186 5.171 10.558 5.534 
  
    The summary statistics for these data are 
 

Mean 5.055 Standard. Deviation. 2.646 

Median 5.171 1.483*MAD 2.739 

Shorth 3.806 to 7.018 
 
 For any hypothetical value of the true mean file size, we can compute the t-statistic for 
our observed sample. 
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 and its associated p-value.  Since in this case, we want both upper and lower bounds 
for our estimate of �, we use the two-sided definition of p-value. 
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For example for a hypothetical value of � = 6, the observed t-value is 
 

384.1    

15
646.2

6  055.5
    14 −=−=t  

 
and the associated p-value is 
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 Thus, we can determine the p-value associated with any value of �.  The (1-�) 
confidence interval will consist of all values of whose p-value is greater than �.  The 
following chart shows the two-sided p-value at different values of �.  The p-value reaches its 
maximum value of 1 when � = 5.055, the sample mean.  If we include in our interval estimate 
all values of � having a p-value of at least 10%, then we cane be 90% confident that the 
interval estimate contains the true mean value in the sense that 90% of interval estimates 
derived by this procedure contain the true value of the mean.  We call such an interval a 90% 
confidence interval.  In this example, the 90% confidence interval for mean file size  
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is the range (3.852, 6.258).  Notice that � = 6 with a p-value of 0.188 is included in the 90% 
confidence interval. 
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9.3. Construction of Confidence Intervals  
 

There is a simple procedure for constructing confidence intervals for parameters whose test 
statistic has a symmetric distribution, such as the Student's t or the normal.  This procedure 
eliminates the need to compute the p-value for every value of �. To construct a (1-�) 
confidence interval, we need only determine the upper and lower bounds of the interval.  The 
lower bound will be that value of � less than the sample mean whose p-value is exactly �.  
Therefore the t-value of the sample mean with respect to the lower bound must be equal to the 
(1-� /2) percentage point of the Student's t distribution. 
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Solving for �Lower, we have 
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Similarly �Upper must satisfy the equation 
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Hence the (1 - � ) confidence interval is given by  
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In our example of files sizes, the 90% confidence interval is 
 

1.203  055.5  
15

2.646
 1.761  055.5    05,.14 ±⇔±⇔±
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s
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As previously determined graphically, this interval is (3.852, 6.258). 
 

9.4. Sample Size Determination  
 

As well as giving a range of reasonably good parameter values, an interval estimate also 
provides information about the quality of the estimated values.  The quality of an estimate has 
two aspects, 
 
1)   Accuracy 
 
2)   Reliability 
 

The accuracy of a interval estimate is equivalent to the length of the interval. The 
smaller the interval, the greater the accuracy.  Reliability is given by the confidence level of 
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the interval.  However, as for Type I and Type II errors of hypothesis tests, accuracy and 
reliability of a confidence interval are in conflict.  For a fixed sample size, the confidence 
level can only be increased by increasing the length of the interval thereby reducing its 
accuracy.  Increasing both the accuracy and reliability can only be achieved by increasing the 
sample size. 
 
 Determining the sample size required to construct an interval estimate having some 
fixed reliability and accuracy is a problem which arises commonly in practice.  Suppose it is 
necessary to estimate a mean to an accuracy of � with a reliability of (1-� ).  That is, we 
require a (1-� ) confidence interval of length not exceeding 2�.  Then the sample size must be 
chosen large enough to satisfy the following inequality. 
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 In practice it is common to substitute a conservative estimate for s and substitute the z 
quantile for the t quantile on the assumption that the required sample size will be large 
enough that the applicable t distribution will be approximately normal.  If we wished to 
estimate file size to an accuracy of 256 KB, or .25 MB with 90% confidence, using a 
conservative estimate of 3 for s, we would require a sample size of 
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9.5. Point Estimation 

 
Randomness is difficult and unpopular.  We are used to have specific answers to questions.  

An interval of estimates can be unsatisfying.  We may ask "What is the single best point or 
value in the interval?"  Such a single value would be a point interval.  The single best value is 
clearly the value which has the highest p-value for the observed data.  This point estimate is 
called the maximum likelihood estimate.  But notice that as the p-value increases and the size 
of the confidence interval decreases, the confidence level decreases accordingly.  In most 
cases, the maximum p-value will be 1, so the confidence level will be zero.  That is, the point 
estimate will never be exactly correct.  Therefore in this case it is extremely important to 
estimate the error of estimation. 
 
 While choosing the single point estimate to be the parameter value assigning the 
maximum p-value to the observed data is a logical consequence of the method of constructing 
confidence intervals, it may have indeterminate or non-unique solutions in certain cases, 
particularly for discrete random variables.  Therefore, point estimates are determined by a 
method similar in spirit to maximizing p-values, the method of maximum likelihood.  Rather 
than maximizing the p-value, maximum likelihood point estimates seek the parameter value 
which maximizes the probability mass or probability density of the observed sample data. 
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9.6. Maximum Likelihood Estimation 
 

Because statistics measure general distributional properties such as location and scale, 
means, medians, and standard deviations can be applied to any distribution.  But estimators 
are associated with parameters for a specific distribution.  Developing satisfactory estimators 
for every individual distributional form would become a daunting task without some general 
procedure or approach.  Fortunately, the idea of likelihood offers such an approach.  
Intuitively, if the conditional probability or likelihood of the observed data is greater for one 
parameter value than another, then the first parameter value is a preferred estimate of the 
population parameter.  By extension, the best choice of estimate for the population parameter 
should be the parameter value whose likelihood is maximum. 
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 An estimator derived by this criterion is called a maximum likelihood estimator or 
MLE and is always denoted with a small cap over the parameter symbol as indicated. 
 
 Consider the case of sampling for an attribute.  If X is the number of items in a sample 
of size n having the desired attribute, then X will have a binomial distribution with parameters 
n which is known from the sampling procedure and p which is unknown.  The likelihood of p 
for the observed X is the conditional probability of X given p. 
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 We can find the maximum likelihood estimate of p by finding the point of the 
likelihood function having zero slope.  That is, by solving the following equation. 
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 The solution is the sample proportion.  We know from the sampling distribution of 
this estimator that it is unbiased.  It is also consistent, sufficient, and efficient among unbiased 
estimators. 
 

n
x

p     ˆ =  

 
 The maximum likelihood estimate for n = 10 and X = 7 is illustrated below. 
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 The maximum likelihood estimator of � for the Poisson distribution is derived in the 
same fashion. 
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Solving for the value of � where the slope of the likelihood function is zero 
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we find 
 

t
x

    ˆ =λ . 

 
The maximum likelihood estimate of � when X = 3 and t = 1 is illustrated below. 
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 The maximum likelihood estimator of � is also unbiased, efficient, consistent, and 
sufficient for the Poisson distribution. 
 
 For the normal distribution, the maximum likelihood estimate of � is obtained by 
minimizing the value in the exponent of the density. 
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The solution is the sample mean. 
 

9.7. Estimation, Estimators, Properties of Estimator 
 
What is an Estimate or an Estimator? 

 
 Formally, an estimator is a statistic defined on the domain of the sample data which is 
used as an estimate a population parameter. An estimate is the value of that statistic for a 
particular sample result. Since every statistic has a theoretical probability distribution for 
every hypothetical probability distribution of the population, it is possible to examine the 
properties of an estimator through its probability distributions. Since many estimators are 
based on likelihood functions, many of the properties of the likelihood function will also be 
exhibited in the probability distribution. 
 
 Because of the special requirements of an estimator, criteria particular to the problem 
of estimation have been proposed as means of evaluating the suitability of a statistic as an 
estimator, of comparing competing estimators, and of developing new and improved 
estimators. You will not that the following criteria can only be applied to statistics which are 
required to be close to some parameter, hence to estimators. 
 
a) Consistency 
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 Consistency is generally agreed to be an essential characteristic of an estimator. As the 
sample size increases, an estimator which is consistent will have smaller and smaller 
probability of deviating a specified distance from the parameter being estimated.  In the limit 
of an infinitely large sample, the value of the estimator will be equal to the estimated 
parameter with probability one. An estimator which does not have this property would give 
more reliable results for smaller samples and therefore could not be using the information in 
the sample consistently. 
 
b) Sufficiency 
 
 Every statistics is a reduction or summarization of the original sample data and as 
such discards some information contained in the original sample data. An estimator which is 
sufficient does not discard any information relevant to the parameter being estimated.  This 
may seem at first to be a rather vague requirement but in fact sufficiency has a very specific 
probabilistic definition. Any statistic creates a partition of the sample space. All elements 
within any partition lead to the same value of the statistic. If the relative or conditional 
probabilities of the individual sample space elements are independent of the parameter being 
estimated, then the partition and the estimator which created it are sufficient. For example, the 
binomial random variable partitions the sample space of n Bernoulli trials into subsets all 
having the same number of successes. The probability of two elements having the same 
number of successes is always the same no matter what the value of p, the probability of 
success. Therefore no further information about p can be obtained by knowing which element 
in the partition actually occurred. Therefore, the sample proportion is a sufficient statistic or 
estimator of p. We always try to work with sufficient statistics. 
 
c) Bias 
 
 Bias or unbiasedness concerns the expected or mean value of the statistic. The statistic 
should be close to the parameter being estimated and therefore its mean value should be near 
the parameter value. Bias is the difference between the mean of the estimator and the value of 
the parameter. Bias should be small. If bias is zero, we say the estimator is unbiased.  
Unbiased estimators are not always preferable to biased ones if they are not sufficient or have 
larger variance. An estimator need not be unbiased in order to be consistent. 
 
d) Efficiency 
 
 As has be said several times and reinforced by the orientation of the preceding criteria, 
an estimator should be close to the parameter being estimated. Simply being unbiased will not 
insure that the estimator is close to the parameter. The variance of the sampling distribution of 
the estimator must be small as well.  For two estimators, the estimator whose sum of variance 
and squared bias is smaller is said to be more efficient. If the two estimators are unbiased, 
then the estimator with smaller variance is more efficient. If an unbiased estimator has 
minimum possible variance for all unbiased estimators, then it is said to be efficient. 
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 Summary of notions 
 

From a methodological point of view we use two kinds of parameters estimations. It is 
a point estimation where distribution parameter is approximated by a number and so called 
interval estimation where this parameter is approximated by an interval where the parameter 
belongs with a high probability. Unbiassed, consistent and efficient estimations of 
parameters are the most important for a quality of point estimation.  
 In the case of interval estimation of a parameter we can search for two-sided or one-
sided estimations.  
 
            
 
 
 
 
 

1.  What is the consistent estimation of parameter? 

2.  How we can describe 100.(1-α ) % two-sided confidence interval for a �-parameter? 

 
 
 
 
 
 
 
Example  1: In random sample of  chipsets there is a 10% not suitable for new quality demands. Find 
95% confidence interval for a p-chipset proportion not suitable for a new norm if a sample size is:   
  a) n = 10 
  b) n= 25 
  c) n = 50 
  d) n = 200 
 
 { Answer: a) –0.06<p<0.26, b) 0.00<p<0.20, c) 0.03<p<0.17, d) 0.07<p<0.13} 
 
Example  2: Four students were random selected from the first parallel group. Their exam results were 
64, 66, 89 and 77 points. Three students were random selected from the second parallel group. Their 
exam results were 56, 71 and 53 points. Find 95% confidence interval for difference between means 
values of exam results.   
 
 { Answer: (-4;32)} 
 
 
 

  Questions 
 

   Problems  
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   Study time:  60 minutes 
 
 

10. ANOVA – One Factor Analysis of Variance  
 

 

 

 Explication 
 
10.1. Introduction 
We talked about one-sample and two-sample tests for mean in the previous lectures. The 

analysis of variance (ANOVA) is an extension of these tests. It enables compare any mean of 
independent random samples. The analysis of variance (in its parametric form) assumes 
normality of the distributions and homoscedasticity (identical variances). If these conditions 
are not executed then we must use nonparametric Kruskall-Wallis test. It is an analog of the 
one-factor sorting in the analysis of the variance. It doesn't assume distributions normality but 
its disadvantage is a smaller sensitivity.  

 
10.2. Construction of the F-statistic 

 
Let's have k-random samples that are independent on each other. These samples have the 
standard distribution with the same variation: 
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 Let in  ...  number of observations in i-th sample.  

    Aim - you will be able to 

• explain structure of F-ratio 

• conclude by the test named Analysis of Variance 

• construct the ANOVA table  

• realize the post hoc analysis 
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Formulation of the problem:  
The hypothesis of interest is H0: µ1 = µ2 = ... = µk = µ 
The alternate hypothesis is: HA: At least two µi's are different. 
 
We want determine on H0 in terms of one test. Cause we try to find such test statistic that 
enable not only H0 implementation but also it was sensitive on the H0 validity. 
 
Define the total sum of squares (or total variability) as 
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- the total sum of squares is our raw measure of variability in the data 
 
This total sum of squares we can separate into 2 components:  
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SSW ... the within group variation (the sum of squares within groups) - is the raw variability 
within samples      
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- the degrees of freedom is equal to the sum of the individual degrees of freedom for each 
sample. Since each sample has degrees of freedom equal to one less than their sample sizes, 
and there are k samples, the total degrees of freedom is k less than the total sample size: N - k 
 

iS is a sample standard deviation of i-th random sample: 
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SSB ... the between group variation (the sum of squares between groups) - is the raw 
variability between samples:  
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Properties of these variances: 
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The within mean square is an unbiased estimate of the variance, independently of H0. 
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Therefore the ratio of the two sums of squared divided by their degrees of freedom will have 
an F distribution under the hypothesis of equal population means.   

2

2
1

W

B

W

B

S
S

kN
SS

k
SS

F =

−

−=  

Definition:  
We call this F statistic as F-ratio.  
 
Why is useful use F-ratio as the test statistic? 

    We see that if H0 is true then F-ratio is any random number close to 1 ... 1≈F . If H0 is 
faslse then this number is markedly bigger than 1 (see property 2). The statistic F-ratio is 
sensitive to validity of the hypothesis H0. So we can use it during following testing as test 
statistic we have to determine its statistical behavior what means to determine its propability 
distribution. 
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summarized variables. 
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Then we know (Fisher-Snedecor distribution) that following ratio: 
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it must have F distribution  with (k-1) and (N-k) degrees of freedom. 
If we know a F-ratio statistical behavior we can use it for analysis and determination of 
previously stated problem in H0. Following figure illustrated a usage of F-ratio to determine 
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a hypothesis H0 validity. 
 
 

0 

F 

0 1 

Pvalue 

Area of H0 validity  

observed value of the F-ratio statistic 
 

 
10.3. ANOVA Table 

We summarize the data in an ANOVA table:  
 

 

Analysis of variance table - ANOVA 

The big values of F-ratio indicate small values of pvalue what means rejection of H0. The F-
ratio value will be a big number if the within group variation is a negligible part of the total 
variability and equivalently if the between variation is a significant part of the total variability. 
 
 

10.4. Solved example 
We assume three data sets for illustration of F-ratio statistical behavior. In each data set, the 
sample means are the same but the variations within groups differs.  When the within group 
variation is small than the F-ratio is large. When the within group variation is large than the 
F-ratio is small. The examples illustrate three cases: small within group variation; normal 
within group variation; and large within group variation. 
 
 

Source Sum of squares Degrees of 
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Example 1:                                  
 
    Small within group variation 

Groups I II III IV 
 42 17.5 68.5 38 
 34.5 12 72 44 
 32.5 16 53 52 

Data 40 15 64 50 
 46.5 20.5 57 43.5 
 28 23 56 41 
 37 15 54.5 42 
 35.5  62.5 46 
   63.5 37.5 
   60 36 
   66  
   55  

Sample size 8 7 12 10 
Group means 37 17 61 43 
Group standard 
deviations 

5.78 3.71 6.06 5.27 

 
      
     ANOVA Table 

 Degrees of 
freedom 

Sum of 
squares 

Mean squares F-ratio 

total 36 9872.7027   
between 3 8902.7027 2967.57 100.96 
within 33 970 29.39  

 
P-value = 0.0000 
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Example 2:      
                              
    Normal within group variation 

Groups I II III IV 
 47 18 76 33 
 32 7 83 45 
 28 15 45 61 

Data 43 13 67 57 
 56 24 53 44 
 19 29 51 39 
 37 13 48 41 
 34  64 49 
   66 32 
   59 29 
   71  
   49  

Sample size 8 7 12 10 
Group means 37 17 61 43 
Group standard 
deviations 

11.56 7.42 12.12 10.53 

 
    
     ANOVA table 

 Degrees of 
freedom 

Sum of 
squares 

Mean squares F-ratio 

total 36 12782.7027   
between 3 8902.7027 2967.57 25.24 
within 33 3880 117.58  

 
P-value = 0.0000 
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Example 3:                                 
     Large within group variation  

Groups I II III IV 
 67 20 106 13 
 22 -13 127 49 
 10 11 13 97 
Data 55 5 79 85 
 94 38 37 46 
 -17 53 31 31 
 37 5 22 37 
 28  70 61 
   76 10 
   55 1 
   91  
   25  
Sample size 8 7 12 10 
Group means 37 17 61 43 
Group standard 
deviations 

34.69 22.25 36.36 31.59 

 
    
     ANOVA table 

 Degrees of 
freedom 

Sum of 
squares 

Mean squares F-ratio 

total 36 43822.7027   
between 3 8902.7027 2967.57 2.804 
within 33 34920 1058.18  

 
P-value = 0.0549 
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10.5. Post Hoc analysis 
A large F-ratio indicates only that some differences exist among the group means, but not 
where those differences occur.  If the F-ratio is large, our analysis would be incomplete 
without identifying which group means differ.  This process is called post hoc analysis, and 
consists of comparing the means of all pairs of samples to determine if there is a difference of 
means. 

Several methods are available for post hoc multiple comparisons. We will discuss the 
simplest method here, least significant differences.  The Least Significant Difference or LSD-
method consists of applying the two-sample t test to every pair of sample means.  However, 
we make one adjustment and use the square root of mean square within rather than the pooled 
standard deviation from the two samples as our estimate of population standard deviation.  
Thus for any pair of sample means, we compute LSD as, 
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This statistic has Student distribution with N-k degrees of freedom. 
 
The LSD method is illustrated for the three examples given previously. 
 
Example 1:   Small within group variation 

We determine (LSD)i,j for all pairs of given four groups and the obtained values we inscribe in 
the following table: 
 

Sample  8 7 12 10 
sizes  I II III IV 

8 I 0 -7.128 9.698 2.333 
7 II 7.128 0 17.064 9.731 

12 III -9.698 -17.064 0 -7.754 
10 IV -2.333 -9.731 7.7541 0 

 
In this case, there is very strong evidence of differences between all groups except I and IV 
where the evidence is not as strong. 
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Example 2:  Normal within group variation 
 

Sample  8 7 12 10 
sizes  I II III IV 

8 I  0 -3.564 4.849 1.167 
7 II 3.564 0 8.532 4.8656 

12 III -4.849 -8.532 0 -3.877 
10 IV -1.167 -4.866 3.877 0 

 
 
 
 
In this case, even though the 
sample means are the same, 
there is no evidence of 
differences between the means 
of Groups I and IV.  Therefore 
there are essentially three 
Groups: II; III; and I and IV 
together. 
 
 

 

 

 

 

 

 

 

Example 3:  Large within group variation 

Since the F-ratio for this example is very small, we would normally conclude that there is no 
evidence against the null hypothesis of equal group means and not proceed further. Any two-
sample t test which produces small p-values should be regarded as spurious.  However, for 
illustration, we have produced the table of least significant differences. 
 

Sample  8 7 12 10 
 sizes  I II III IV 

8 I 0 -1.188 1.616 0.389 
7 II 1.188 0 2.844 1.622 

12 III -1.616 -2.844 0 -1.292 
10 IV -0.389 -1.622 1.292 0 

 

 

I II III IV 

Sample means 

two homogenous groups: I and IV 
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In this example, the only least significant difference which has a small p-value is between 
groups II and III.  However, because the overall F-ratio was too small, this difference would 
be disregarded and we would conclude that no differences exist between the means of any of 
the groups. 
 
Note: 
There exists other tests then LSD method which allows similar multiple comparisons what 
means a post hoc analysis. Also there were developed more flexible methods which are 
accessible thru the more advanced software (e.g. Duncan test, Tukey test for significant 
differences, Scheffe test and Bonferoni test). These tests are based on similar decision strategy 
and that's on setting of a critical difference requested for determination if two sample means 
from several groups are different. In many cases these tests are much more effective than LSD 
method.       
   

10.6. Kruskal-Wallis test 
The F-ratio test statistic used in the standard analysis of variance is known to be very 
sensitive to the assumption that the original observations are normally distributed. Because 
the test statistic is based on squared deviations from the mean, it can be badly distorted by 
outliers.  For two-sample analysis, the Wilcoxon/Mann Whitney rank test was introduced as a 
nonparametric alternative which is less sensitive to outliers than the t test. For multiple 
samples, the Kruskal-Wallis rank test can be used for the same purpose. Like the 
Wilcoxon/Mann Whitney test, the Kruskal-Wallis test substitutes the ranks of the original data 
values and performs an analysis of variance on the ranks.  For the large deviation data of the 
previous example the ranks for each group are listed in the following table. 

 

Groups I II III IV 

 28 11 36 9.5 
Ranks 12.5 2 37 23 
of original 6.5 8 9.5 35 
data 25.5 4.5 31 32 
 34 21 19 22 
 1 24 16.5 16.5 
 19 4.5 12.5 19 
 15  29 27 
   30 6.5 
   25.5 3 
   33  
   14  

Sample size 8 7 12 10 
Mean rank 17.6875 10.7143 24.4167 19.35 
Standard deviation 11.1674 8.5919 9.6668 10.6538 

 
  
The test statistic is a modification of calculating the F-ratio for the ranks.  In this example, the 
test statistic and p-value are: 
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  K-W test statistics  =  7.24325  p-value  = 0.0645 
 
The p-value for the Kruskal-Wallis test is slightly higher than for the F-test, but the 
conclusions are the same in both cases.  The null hypothesis of equal group means is not 
rejected.       
 
 

 Summary of notions 
 

Analysis of variance (ANOVA) is an extension of the two-sample tests for means and it 
enables compare any mean of independent random samples. F-ratio is the test statistics in 
analysis of variance. F-ratio statistics is sensitive to validity of the hypothesis H0, which is 
formulate as an equality of the samples means. Particular interresults (that we execute during 
analysis of variance) are recorded into ANOVA table. The second step (in ANOVA) is post 
hoc analysis, and consists of comparing the means of all pairs of groups of purpose to choose 
homogenous groups. LSD-statistics is a criterion for assignment to homogenous groups.  
Described procedure ANOVA is sensitive to the assumption that the original observations are 
normally distributed. If this condition is not executed then we must use nonparametric 
Kruskall-Wallis rank test. 
 
  

 
 

 

 

1. Describe construction and statistical behavior of the F-ratio statistics.  

2. What is the usual output from analysis of variance? 

3. What is post hoc analysis? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Questions 
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Example  1: We made a research of dependency of earning and achieved education. In the table there 
are earnings in thousand CZK at 7 randomly selected men at each level of education. (B - basic, H - 
high, U - university). 

 
 B H U 

1 10.9 8.9 11.2 
2 9.8 10.3 9.7 
3 6.4 7.5 15.8 
4 4.3 6.9 8.9 
5 7.5 14.1 12.2 
6 12.3 9.3 17.5 
7 5.1 12.5 10.1 

 
  Do a simple sorting and determine if education does influence earning.  
 
{Answer: p-value = 0.057}  

 

Example  2: From a large set of homes we randomly selected 5 single homes, 8 couple, 10 three-
member, 10 four-member and 7 five-member homes. We watched their month spending for food and 
drinks for one family member (in CZK). Confirm by analysis of variance if a month spending for food 
and drinks depends on a number of family members.  

 
 Spending for one family member (in CZK) 

Number of family 
members 

1 2 3 4 5 

 3.440 2.350 2.529 2.137 2.062 
 4.044 3.031 2.325 2.201 2.239 
 4.014 2.143 2.731 2.786 2.448 
 3.776 2.236 2.313 2.132 2.137 
 3.672 2.800 2.303 2.223 2.032 
  2.901 2.565 2.433 2.101 
  2.656 2.777 2.224 2.121 
  2.878 2.899 2.763  
   2.755 2.232  
   3.254 2.661  

 
{Answer: Use suitable software package.} 

 

   Problems  
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   Study time:  60 minutes 
 

11. SIMPLE LINEAR REGRESSION  
 

 

 
 

 Explication 
 

11.1. Introduction 
Mathematical formulation of statistical models 

 
Symbolically, the basic additive formulation of statistical models can be expressed as 

 

( ) ( )εζ+= XfY  

 

where Y is the observed value, f(X) is the systematic component and �(�) is the random 
component. This schematic model explicitly identifies three type of variables. 
 
Y – Response, Criterion, dependent Variable (observed value of primary interest) 
X– Predictor, Stimulus, Independent Variable (those factors to which the value of the 
systematic component may be attributed) 
� -  random error 
 
Only Y and X are observable. Random error is always unobservable. 
�(�) is always estimated as the residua difference between the estimated systematic 
component and the observed response, Y.  
 

( ) ( )XfY −=εζ  

 

Therefore the estimated split of the observed response into its systematic and random 
components is as much a consequence of the choice of models, f and �, and the method of 
estimation as it is of the observed stimulus and response, X and Y.    

    Aim - you will be able to 

• explain a general linear model notion  

• explain a linear regression model principle  

• use regression analysis results  

• verify a regression model by determination index 
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11.2. General linear model 
     The general linear statistical model is a special simple case of the schematic statistical 
models discussed above. The so-called linear statistical model stipulates that the systematic 
component is a linear combination of the systematic factors or variables, and the random 
component is the identity function of random error. 
 

- random component:     ( ) εεζ =  

- systematic component: ( ) �
=

+=
p

i
ii XXf

1
0 ββ  

 
Why use a Linear Systematic Function? 
 
Linear systematic components have three fundamental properties which are desirable for 
statistical models – simplicity, estimability and stability. 
 
Linear functions represent or give algebraic expression to the simplest kind of relationship. 
linear functions postulate either: 

- stimulus and response tend to increase and decrease together 
- response decreases as stimulus increases 

 
For the simple linear model 
 

εββ ++= XY 10  
 

if �1<0; the relation is negative => Y decreases as X increases 
if �1>0; the relation is positive => Y and X increase together 
 
Assumptions about the random component 
 
In decreasing order of impact on results and interpretation, the following three assumptions 
about the behavior of the random component of a linear statistical model are widely adopted. 
 
1. Independence – the random errors �i and �j are independent for all pairs of observations i 

and j 
2. Equal Variance – the random errors �i all have the same variance �2 for all observations 
3. Normality – the random errors �i are normally distributed 
  

 
11.3. Estimation of parameters for the simple linear regression model 
The following scatter plot illustrates the type of data which is typically described by a 

simple linear model. 
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From the formulation of the general linear model, the special case of the simple linear 
model in which the systematic component is a linear function of a single variable, that is a 
straight line, may be expressed as: 
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and all �i are mutually independent. 
 
For any estimates of the parameters, �0 and �1, say b0 and b1, the residual errors of estimation 
are: 
 

iii XbbYe 10 −−=  
 

as illustrated below. 
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The least squares parameter estimates are those values of b0 and b1 which minimize the sum 
of squared residual errors. 
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To find the parameter estimates which minimize the sum of squared residuals, we compute 
the derivatives with respect to b0 and b1 and equate them to zero.  
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The solutions to the above equations are the least squares parameter estimates. Notice that the 
first equation insures that the residuals for the least squares estimates of  �0 and �1 always sum 
to zero. 
Because the least squares estimates are also maximum likelihood estimates under the 
assumption of normally distributed errors, they are usually denoted by the symbols �0 and �1. 
The solutions to the least squares equations are: 
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The intercept parameter, 0β̂ , merely places the vertical position of the line at the point where 

the residual errors sum to zero. The operative parameter is the slope estimate, 1β̂ , which has a 
particularly simple form in terms of the correlation and relative standard deviations of the 
response Y and the explanatory variable X.  
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The residual sum of squares for the simple regression model is  
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which like the least squares slope estimate, 1β̂ , has a simple expression in terms of the 
correlation between X and Y and the variance of Y. 
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The residual sum of squares for a regression model measures how well the model fits the data. 
A smaller residual sum of squares indicates a better fit. Because a higher squared correlation 
between X and Y is associated with a smaller residual sum of squares as a proportion of the 
variance of Y, the squared correlation between X and Y is usually used as a measure of the 
goodness of fit of the regression model. When rxy = ±1, the sample observations of X and Y all 
lie on a straight line and the residual sum of squares is zero. When rxy = 0, X and Y are 
independent and the residual sum of squares will equal the sum of squared deviations of Y 
about its mean. 
 
If the residual sum of squares measures the size of the random component of the regression 
model, then the remainder, the difference between the original sum of squared deviations of Y 
about its mean and the residual sum of squares of Y about the regression line must represent 
the systematic component of the model.  To better understand what this systematic component 
measures, let the point on the regression line or predicted value of Y for the ith observation of 
X be 
 

ii xy 10
ˆ  ˆ    ˆ ββ += . 

 
Firstly, note that the least squares estimates of 0β̂  and 1β̂  insure that the mean of the 
predicted value of Y will always equal the mean of the original observations of Y.  That is, 
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Then as was the case in the analysis of variance, the total sum of squared deviations of Y 
from its mean 
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can be partitioned into the sum of squared residual errors, 
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and the sum of squared deviations of the predicted values of Y from their mean. 
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We see that 
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The sum of squares due to regression is often called the explained variation and conversely 
the sum of squared residual errors, the unexplained variation.  The partitioning of the total 
variation of Y into these two components is due to the fact that the least squares estimates 
must satisfy the condition, 
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That is, the residual errors must be orthogonal to the predictor variable. 
 
The partitioning of the total sum of squared deviations of the response, Y, about its mean into 
the systematic component, explained variation, and the random component, sum of squared 
residuals is frequently presented as an Analysis of Variance table. The F-test computed by 
this ANOVA Table tests the null hypothesis that the systematic component of the model is 
zero. 
 

Source Degrees of Freedom Sum of Squares Mean Squares  F-ratio 
Total n-1 ( ) 21 ysn −    

 
Regression 

 
1 
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Thus, the F-test for testing the significance of the regression model depends only on the 
correlation between response and explanatory variables and on the sample size.  In practice, 
the null hypothesis of no regression effect is almost always rejected, but even if rejected does 
not imply that the regression model will provide satisfactory predictions. 
 
As in the case of analysis of variance for factorial models, the estimate of the error variance, 
σ2, is the mean squared error. 
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This estimated error variance for the regression line is also called the conditional variance of 
Y given X, that is, the variance of Y remaining after the effect of X has been removed. 
 

( ) 2222

2
1

1    ˆ    yxyxy s
n
n

rs �
�

�
�
�

�

−
−−== σ  

 
A second consequence of least squares estimates of 0β  and 1β  is that the least squares line 
will always pass through the point of means ( )YX  , .  In fact the z-value of the prediction for Y 
is simply the correlation between X and Y times the corresponding z-value for X.  That is, 
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Clearly when xxi   = , then yyi   ˆ = . 
 
 

11.4. Distribution of least squares parameter estimates 
If the predictor or explanatory variable X is assumed to be a fixed constant rather than a 

random variable, then both 0β̂  and 1β̂  are linear combinations of the normally distributed 
criterion or response variable, Y, and hence are normally distributed themselves.  The mean 
and variance of the slope parameter estimate are 
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These results can readily be established by noting that the least squares estimate of 1β  may 
be expressed as the following linear combination of the observations of Y. 
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Then the expected value of the slope parameter estimate is 
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and the variance of the slope estimate is 
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The significance of these results is that the least squares estimate of the slope parameter is 
unbiased and its variance becomes smaller as the sample size increases. In addition, the 
variance of the estimate becomes smaller when the variance or range of X becomes larger. 
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By substitution of the mean squared error estimate of σ2 into the expression of the variance 
of the slope parameter estimate, the following estimated variance of the slope parameter is 
obtained 
 

( )
2

22

2
2
ˆ )2(

 1
    

)2)(1(
    ˆ

1
x

yxy

x

Error

sn

sr

snn
SS

−
−

=
−−

=βσ  

 
Because 1β̂  is unbiased, substitution into the least squares determining equation for 0β̂  

readily shows that the least squares intercept estimate, 0β̂ , is also unbiased. 
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The variance of 0β̂  is obtained by again noting that from the least squares determining 

equation, 0β̂  can be expressed as the following linear combination of the observations of Y. 
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By squaring and summing constant terms in this linear combination, the variance is found to 
be 
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This expression for the variance of the least squares estimate of the intercept consists of two 
parts, the reciprocal of the sample size, n, which is the usual factor for the variance of a 
mean, and the ratio of the square of the mean of X to its variance.  As for 1β̂  , an estimate of 

the variance of 0β̂   can be obtained by substituting the mean squared error estimate of σ2. 
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Since the predicted value, iŷ , is also a linear combination of the least squares parameter 
estimates, it too will be normally distributed. 
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The expected value of iŷ  is obtained by direct substitution into the linear prediction 
equation. 
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As for 0β̂  and 1β̂ , the variance of iŷ  is derived by squaring and summing the constant terms 
in the expression of iŷ  as a linear combination of the observations of Y. 
 

[ ] ( )
( )

( )
�
�
�

�
�
�
�

�

−
−

+=
�
�
�
�

�

�

�
�
�
�

�

�

−

−
+=
�

=

2

2
2

1

2

2
2

)1(
  

1
       

1
     ˆ

x

i
n

k
k

i
i sn

xx
nxx

xx
n

yV σσ

 
 

Again notice that the expression for the variance of the predicted value for the ith observation 
of Y consists of two components.  The first component, the reciprocal of the sample size, is 
the usual factor for the variance of a mean.  The second component is a normalized squared 
distance of xi, the ith observation of the explanatory variable, from its mean. Thus the 
variances of predictions of Y for values of xi near its mean will be close to the variance of an 
ordinary sample mean. But for values of xi far from its mean, the variances of the predictions 
will increase linearly with the squared normalized distance from the mean. 
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The foregoing expression for the variance of iŷ  is the variance of the estimate of the 
regression line, which is the conditional mean of Y given X.  But the variance of a prediction 
for single observation of Y at X will be much greater. This prediction error will be the 
original variance of Y, σ2, plus the variance of error due to estimation of the regression line.  
Therefore, the estimated variance of a single observation or prediction at Xi is 
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Both estimates of the regression line and predictions from the regression line will be more 
accurate for values of X near the mean. 
 

11.5. Inference for the regression line 

It is often of interest to test hypotheses about the parameters of the regression model or to 
construct confidence intervals for various quantities associated with the model.  There may 
be theoretically prescribed values for the parameters. Confidence intervals for predictions 
from the regression model are frequently required.  Inferential procedures follow in a natural 
way from the fact that least squares parameter estimates and hence the estimated regression 
line is all linear combination of the response variable, Y, and like Y will be normally 
distributed.  In addition, the estimated variances of these parameters are derived from the 
sum of squared deviations of Y and hence will have a χ2 distribution.  Therefore, the 
following statistics all have Student's t distributions with (n-2) degrees of freedom. 
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where 0β  and 1β  are the true or hypothesized values of the regression parameters. The most 
commonly tested null hypothesis is that the slope and intercept equal zero. This test is the t-
test produced by most regression software. For the slope parameter, this test has a 
particularly interesting interpretation. 
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which is simply the square root of the F-test for the regression model derived earlier. Thus, 
testing whether the systematic component is zero is equivalent to testing whether the slope of 
the regression line is zero.  If 1β  = 0, then the regression line will be horizontal at the mean 
of Y, that is, the mean of Y will be predicted at every value of X and X will have no effect on 
predictions of Y. 
 
Confidence intervals for the intercept, slope, regression line, and predictions from the 
regression line are calculated in the usual manner. 
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The confidence interval for the regression line is 
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And the confidence interval for predictions from the regression line is 
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The following chart displays 95% confidence intervals for both the regression line and 
individual predictions from the regression line.  Notice that the confidence bounds for the 
regression line are very narrow and include very few of the original data points.  This is 
because the correlation between predictor and criterion variables is high and the fit of the 
regression line is good.  On the other hand, all original observations are included within the 
confidence bounds for single points. 
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      Solved example 
 
The company repairs the desktop calculators and cashes. The data from 18 repairs are written in the 
table. Each repair has 2 important data. The former is a number of repaired calculators (X) and the 
latter is a total repair time (Y). 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
x 7 6 5 1 5 4 7 3 4 2 8 5 2 5 7 1 4 5 
Y 97 86 78 10 75 62 101 39 53 33 118 65 25 71 105 17 49 68 

 
a)  Find parameter estimates of the regression line. 
b)  Draw data and regression function. 
c)  Use t-tests for the values of all parameters of regression function. 

 
 
Solution 
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 – we can use STATGRAPHIC software: 
 
Linear regression – Repair time vs. Number  
 

Regression Analysis - Linear model: Y = 0b  + 1b *x 
----------------------------------------------------------------------------- 
Dependent variable:       Repair Time        
Independent variable:     Number 
----------------------------------------------------------------------------- 
                                                  
Parameter          Estimate          Standard  Error       T Statistic              P-Value 
------------------------------------------------------------------------------------------- 

0b - Intercept      -2,32215                 2,56435           -0,905549              0,3786 

1b - Slope             14,7383                 0,519257           28,3834                0,0000 
------------------------------------------------------------------------------------------- 
 

 
Slopeb,Interceptb == 10 , the results of these values may be found in the second column.  

The following function introduces an equation for the estimate of predicted value:   
 

Repair Time = -2,32215 + 14,7383 .... Number 
 

The observed values of the t-tests are shown in the fourth column (T Statistic) and 
corresponding p-values are displayed in the last one. It is obvious that hypothesis H0: �0=0 
will not be rejected considering the important value in p-value column. Based on this, we can 
say that regression line passes through the beginning what is a logical conclusion, considering 
the data nature. The second of particular test says that Slope is a value that significantly 
differs from zero since we have rejected H0 hypothesis H0: �1=0. 

 
 

d)  Let’s find the 95% confidential interval for the repair time in dependence on the number 
of calculators. 

e)  Let’s find point and interval estimation for an expected repair time for 5 calculators. 
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Solution 

 
 
For value x=5: 
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f)  Consider the quality of examined model of linear regression for the repair time in 

dependence on a number of calculators using a coefficient of determination  
 

Solution 
 

RŶY SSSSSS +=  

                            

----------------------------------------------------------------------------- 
Source                        Sum of Squares    
----------------------------------------------------------------------------- 
Regression      

Ŷ
SS            16182,6      

Error    RSS            321,396      
----------------------------------------------------------------------------- 
Total               YSS            16504,0      
 

%.
SS
SS

I
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Ŷ 0526982 ==  

 
 
 

Regression of the repair time 

Number
0 2 4 6 8 

0 

20 

40 

60 

80 

100 

120 

R
ep

ai
r t

im
e



 166 

 Summary of notion 
 

Regression model is a special case of general linear model. The basic assumptions are 
independence, homoscedasticity and normality.  

Dependent variable is the variable of a regression model that is random and we try 
explaining its behavior and describing by mathematical curve. 

Independent (explanatory) variables are the variables in the regression model whose 
behavior explains the behavior of the dependent variable.  

Linear regression model with one explanatory variable is a basic model and it is based on 
the Least-Squares Method. By this method we can determine model parameters. The sum of 
squared deviations of the real values from modeled values is called the residual sum of 
squares. 

We can obtain interval estimation for the expected value of the dependent variable. These 
interval bounds form confidential interval of the regression line.     

 
 
 
 
 
 
 

1. Describe and explain equation of linear regression. 
2. What means p-value in the ANOVA table for linear regression?  
3. What property describes a coefficient of determination?  

 
 
 

 

 

 

 

Example  1: During control measurements of industrial components size we randomly chosen 8 
components showing mostly positive divergences from normal values in the length and height:  

 
length divergence [mm] 3 4 4 5 8 10 6 3 
height divergence [mm] 4 6 5 6 7 13 9 4 

 
Let’s find the linear regression model of dependency between the length divergence and height 
divergence. 
 
{Answer: Use a suitable software package.} 

 

Example  2: In the years 1931-1961, water flow in profile of Šance and Morávka water reservoirs 
were measured. Averages per year (m3/s) are given by the following table:  

 

   Problems  
 

  Question  
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year Šance Morávka  year Šance Morávka 
1931 4,130 2,476  1946 2,608 1,374 
1932 2,386 1,352  1947 2,045 1,194 
1933 2,576 1,238  1948 3,543 1,799 
1934 2,466 1,725  1949 4,055 2,402 
1935 3,576 1,820  1950 2,224 1,019 
1936 2,822 1,913  1951 2,740 1,552 
1937 3,863 2,354  1952 3,792 1,929 
1938 3,706 2,268  1953 3,087 1,488 
1939 3,710 2,534  1954 1,677 0,803 
1940 4,049 2,308  1955 2,862 1,878 
1941 4,466 2,517  1956 3,802 1,241 
1942 2,584 1,726  1957 2,509 1,165 
1943 2,318 1,631  1958 3,656 1,872 
1944 3,721 2,028  1959 2,447 1,381 
1945 3,290 2,423  1960 2,717 1,679 

 
 
Let’s assume that in one of following years, the average value of whole year water flow of 
Morávka reservoir is missing. In this year, the average water flow for Šance reservoir was 
2,910 m3/s.  Based on linear regression, try to determine the average water flow in Morávka 
reservoir. 
 
{Answer: Use a suitable software package.} 
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12. KEYS TO SOLUTION 
 
12.1. Lecture 1 

1. Exploratory data analysis is often a first step in revealing information hidden in large 
amount variables and their variants. 

2. The base kinds of variables are a quantitative variable (nominal, ordinal) and a 
qualitative variable (discrete, continuous). 

3. The frequency table is concerning with absolute and relative frequencies (for a 
qualitative variable). 

4. The outliers are the variable values which significantly differ from other values. 
5.  b) 
6. qualitative variable – bar chart, pie chart 

quantitative variable – box plot, stem and leaf plot 
7. b) 14 thousand, d) cca (9;19) 

 

12.2. Lecture 2 

1.  ( ) ( ) ( ) ( )BAPBPAPBAP ∩−+=∪  
2.  ( ) ( ) ( )BPAPBAP ⋅=∩  
3.  Two events are independent if intersection probability of these two events is equal to a 
product of individual event probabilities. 

 
12.3. Lecture 3+4 

1. F( x ) = �
<

=
xx

i
i

)xP(X  

2. ( )dttf)x(F
x

�
∞−

=     for  - ∞ < x < ∞ 

3. 50% quantile is called a median 
      A mode is a value in which the discrete RV comes with the biggest probability. 
4. The conditional distribution is the distribution of one variable at a fixed value of the 

other jointly distributed random variable. 
5. X1 … Xn are mutually independent ⇔  F(x1,…,xn) = F1(x1) .…. Fn(xn). 
6. The correlation coefficient measures the strength of the relation between two random 

variables. 
 
12.4. Lecture 5 

1. discrete distribution – binomial, geometric, negative binomial  
          continuous distribution – poisson, exponential, Weibull, Gamma 

2. A sequence of Bernoulli trials is defined as a sequence of random events which are 
mutually independent and which have only two possible outcomes and the probability 
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of event occur  p is constant in any trial. On the basis of these trials expectations we 
can define the following random variables: binomial, geometric and negative binomial. 

mean of the binomial random variable: EX=np 
3. A Gamma distribution describes a time to k-th event occurrence in a Poisson process 
4. �=2 

 
12.5. Lecture 6 

1. X ... RV with N(µ,�2) => 
σ

µ−= X
Z  ... N(0,1) 

2. Chebyshev's inequality puts an upper bound on the probability that an observation 
should be far from its mean. 

3. The law of large number is a theorem about convergence of means in the sequence of 
the random variables. 

4. Chí-square distribution is a distribution derived from sum of squared standard normal 
random variables. 

 
12.6. Lecture 7 

1. Inferential statistics or statistical induction comprises the use of statistics to make 
inferences concerning some unknown aspect of a population. 

2. A random sample is a set of items that have been drawn from a population in such a way 
that each time an item was selected, every item in the population had an equal 
opportunity to appear in the sample. 

       
12.7. Lecture 8 
1. The p-value calculation depends on defined null hypothesis:  
a) 0:0 µµ <H  => p-value=F(xobs) 
b) 0:0 µµ >H  => p-value=1-F(xobs) 
c) 0:0 µµ =H  => p-value=2{F(xobs), 1-F(xobs)} 
2. It is a hypothesis that is accepted in case the rejection of null hypothesis.  

3. 
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12.8. Lecture 9 

1. An θ̂  estimation is consistent if      

a) θ̂  is asymptotically unbiassed, θθ →ˆE   
b) 0ˆlim =

∞→
θD

n
 

 
2. αθ −≥≤≤ 1))()(( XTXTP HD  
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12.9. Lecture 10 

1. 2

2

W

B

S
S

F =  ... F-distribution  with (k-1) and (N-k) degrees of freedom 

2. ANOVA table 
3. The post hoc analysis is a second step of ANOVA and consists of comparing the 

means of all pairs of groups of purpose to choose homogenous groups. 
 
12.10. Lecture 11 

1. y=a+b*x, where y is a dependent variable and x is an independent variable. The values 
a (intercept) and b (slope) are estimates of regression line parameters   

2. x and y are independent variables, in the case that p-value > 0,05  
3. Coefficient of determination predicate about suitability of used model 


